Contents
Academic literature on the topic 'Modèles multi-fidélité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèles multi-fidélité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modèles multi-fidélité"
Poirier, Martine, Diane Marcotte, Jacques Joly, and Laurier Fortin. "Évaluation de la qualité de l’implantation du programme Pare-Chocs à l’école secondaire." Mosaïque 42, no. 1 (June 14, 2017): 355–77. http://dx.doi.org/10.7202/1040259ar.
Full textBourdon, Laura, Carole C. Tranchant, Danielle Doucet, Hélène Corriveau, and Vickie Plourde. "Development of a Community-Based Training for Peer Support Workers in Youth Mental Health Settings: An Exploratory Pilot Study." Canadian Journal of Family and Youth / Le Journal Canadien de Famille et de la Jeunesse 15, no. 3 (April 28, 2023): 130–56. http://dx.doi.org/10.29173/cjfy29956.
Full textDissertations / Theses on the topic "Modèles multi-fidélité"
Thenon, Arthur. "Utilisation de méta-modèles multi-fidélité pour l'optimisation de la production des réservoirs." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066100/document.
Full textPerforming flow simulations on numerical models representative of oil deposits is usually a time consuming task in reservoir engineering. The substitution of a meta-model, a mathematical approximation, for the flow simulator is thus a common practice to reduce the number of calls to the flow simulator. It permits to consider applications such as sensitivity analysis, history-matching, production estimation and optimization. This thesis is about the study of meta-models able to integrate simulations performed at different levels of accuracy, for instance on reservoir models with various grid resolutions. The goal is to speed up the building of a predictive meta-model by balancing few expensive but accurate simulations, with numerous cheap but approximated ones. Multi-fidelity meta-models, based on co-kriging, are thus compared to kriging meta-models for approximating different flow simulation outputs. To deal with vectorial outputs without building a meta-model for each component of the vector, the outputs can be split on a reduced basis using principal component analysis. Only a few meta-models are then needed to approximate the main coefficients in the new basis. An extension of this approach to the multi-fidelity context is proposed. In addition, it can provide an efficient meta-modelling of the objective function when used to approximate each production response involved in the objective function definition. The proposed methods are tested on two synthetic cases derived from the PUNQ-S3 and Brugge benchmark cases. Finally, sequential design algorithms are introduced to speed-up the meta-modeling process and exploit the multi-fidelity approach
Nachar, Stéphane. "Optimisation de structures viscoplastiques par couplage entre métamodèle multi-fidélité et modèles réduits." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN051/document.
Full textEngineering simulation provides the best design products by allowing many design options to be quickly explored and tested, but fast-time-to-results requirement remains a critical factor to meet aggressive time-to-market requirements. In this context, using high-fidelity direct resolution solver is not suitable for (virtual) charts generation for engineering design and optimization.Metamodels are commonly considered to explore design options without computing every possibility, but if the behavior is nonlinear, a large amount of data is still required. A possibility is to use further data sources to generate a multi-fidelity surrogate model by using model reduction. Model reduction techniques constitute one of the tools to bypass the limited calculation budget by seeking a solution to a problem on a reduced order basis (ROB).The purpose of the present work is an online method for generating a multi-fidelity metamodel nourished by calculating the quantity of interest from the basis generated on-the-fly with the LATIN-PGD framework for elasto-viscoplastic problems. Low-fidelity fields are obtained by stopping the solver before convergence, and high-fidelity information is obtained with converged solution. In addition, the solver ability to reuse information from previously calculated PGD basis is exploited.This manuscript presents the contributions to multi-fidelity metamodels and the LATIN-PGD method with the implementation of a multi-parametric strategy. This coupling strategy was tested on three test cases for calculation time savings of more than 37x
Sacher, Matthieu. "Méthodes avancées d'optimisation par méta-modèles – Applicationà la performance des voiliers de compétition." Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0032/document.
Full textSailing yacht performance optimization is a difficult problem due to the high complexity of the mechanicalsystem (aero-elastic and hydrodynamic coupling) and the large number of parameters to optimize (sails, rigs, etc.).Despite the fact that sailboats optimization is empirical in most cases today, the numerical optimization approach is nowconsidered as possible because of the latest advances in physical models and computing power. However, these numericaloptimizations remain very expensive as each simulation usually requires solving a non-linear fluid-structure interactionproblem. Thus, the central objective of this thesis is to propose and to develop original methods aiming at minimizing thenumerical cost of sailing yacht performance optimization. The Efficient Global Optimization (EGO) is therefore appliedto solve various optimization problems. The original EGO method is extended to cases of optimization under constraints,including possible non computable points, using a classification-based approach. The use of multi-fidelity surrogates isalso adapted to the EGO method. The applications treated in this thesis concern the original optimization problems inwhich the performance is modeled experimentally and/or numerically. These various applications allow for the validationof the developments in optimization methods on real and complex problems, including fluid-structure interactionphenomena
Chetry, Manisha. "Advanced reduced-order modeling and parametric sampling for non-Newtonian fluid flows." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0011.
Full textThe subject of this thesis concernsmodel-order reduction (MOR) of parameterizednon-Newtonian flow problems that havesignificant industrial applications. TraditionalMOR methods constrain the computationalperformance of such highly nonlinear problems,so we suggest a state-of-the-art hyper-reductiontechnique based on a sparse approximation totackle the evaluation of nonlinear terms at muchreduced complexity. We also provide offlinestabilization strategy for stabilizing theconstitutive model in the reduced order modelframework that is less expensive to computewhile maintaining the full order model's (FOM)accuracy. Combining the two significantlylowers the CPU cost as compared to the FOMevaluation which inevitably boosts MORperformance. This work is validated on twobenchmark flow problems. Additionally, anadaptive sampling strategy is also presented inthis manuscript which is achieved byleveraging multi-fidelity model approximation.Towards the end of the thesis, we addressanother issue that is typically observed forcases when adaptive finite element meshesare deployed. In such cases, MOR methods failto produce a low-dimensional representationsince the snapshots are not vectors of samelength. We therefore, suggest an alternatemethod that can generate reduced basisfunctions for database of space-adaptedsnapshots
Benamara, Tariq. "Full-field multi-fidelity surrogate models for optimal design of turbomachines." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2368.
Full textOptimizing turbomachinery components stands as a real challenge despite recent advances in theoretical, experimental and High-Performance Computing (HPC) domains. This thesis introduces and validates optimization techniques assisted by full-field Multi-Fidelity Surrogate Models (MFSMs) based on Proper Orthogonal Decomposition (POD). The combination of POD and Multi-Fidelity Modeling (MFM) techniques allows to capture the evolution of dominant flow features with geometry modifications. Two POD based multi-fidelity optimization methods are proposed. Thefirst one consists in an enrichment strategy dedicated to Gappy-POD (GPOD)models. It is more suitable for instantaneous low-fidelity computations whichmakes it hardly tractable for aerodynamic design of turbomachines. This methodis demonstrated on the flight domain study of a 2D airfoil from the literature. The second methodology is based on a multi-fidelity extension to Non-IntrusivePOD (NIPOD) models. This extension starts with a re-interpretation of theConstrained POD (CPOD) concept and allows to enrich the reduced spacedefinition with abondant, albeit inaccurate, low-fidelity information. In the second part of the thesis, a benchmark test case is introduced to test fullfield multi-fidelity optimization methodologies on an example presenting featuresrepresentative of turbomachinery problems. The predictability of the proposedMulti-Fidelity NIPOD (MFNIPOD) surrogate models is compared to classical surrogates from the literature on both analytical and industrial-scale applications. Finally, we employ the proposed tool to the shape optimization of a 1.5-stage boosterand we compare the obtained results with standard state of the art approaches