Academic literature on the topic 'Modèle Poisson log-normal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèle Poisson log-normal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Modèle Poisson log-normal"
Batardière, Bastien. "Machine learning for multivariate analysis of high-dimensional count data." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM047.
Full textThis thesis deals with the modeling and analysis of high-dimensional count data through the framework of latent variable models, as well as the optimization of such models. Latent variable models have demonstrated their efficacy in modeling count data with complex dependency structures, with the Poisson Log-Normal (PLN) model serving as a prime example. However, the PLN model does not meet the characteristics of real-world count datasets, primarily due to its inability to produce a high number of zeros. We propose the Zero-Inflated PLN (ZIPLN) extension to meet these characteristics. The latter and other variants of PLN are implemented in a Python package using variational inference to maximize the log-likelihood. In the second part, we focus on the finite-sum maximization problem, a common challenge when optimizing a wide range of latent variable models. We introduce an adaptive method named AdaLVR, scaling effectively with both the dimensionality and the sample size of the dataset, designed explicitly for this finite-sum optimization problem. A theoretical analysis of AdaLVR is conducted, and the convergence rate of O(T ⁻¹) is obtained in the convex setting, where T denotes the number of iterations. In the third part, we discuss the optimization of latent variable models using Monte Carlo methods, with a particular emphasis on the PLN model. The optimization occurs in a non-convex setting and necessitates the computation of the gradient, which is expressed as an intractable integral. In this context, we propose a first-order algorithm where the gradient is estimated using self-normalized importance sampling. Convergence guarantees are obtained under certain easily verifiable assumptions despite the inherent bias in the gradient estimator. Importantly, the applicability of the convergence theorem extends beyond the scope of optimization in latent variable models. In the fourth part, we focus on the implementation of the inference for PLN models, with a particular emphasis on the details of variational inference designed for these models. In the appendix, we derive confidence intervals for the PLN model, and an extension to the ZIPLN model, integrating Principal Component Analysis, is proposed. A semi-parametric approach is also introduced. Concurrently, an analysis of a real-world genomic dataset is conducted, revealing how different types of cells in plant leaves respond to a bacterial pathogen
El-Khatib, Mayar. "Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement." Thesis, 2010. http://hdl.handle.net/10012/5741.
Full textBook chapters on the topic "Modèle Poisson log-normal"
CHIQUET, Julien, Marie-Josée CROS, Mahendra MARIADASSOU, Nathalie PEYRARD, and Stéphane ROBIN. "Le modèle Poisson log-normal pour l’analyse de distributions jointes d’abondance." In Approches statistiques pour les variables cachées en écologie, 175–99. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9047.ch8.
Full textDean, C. B. "Estimating equations for mixed Poisson models." In Estimating Functions, 35–46. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198522287.003.0003.
Full textConference papers on the topic "Modèle Poisson log-normal"
Goldasteh, Iman, Goodarz Ahmadi, and Andrea Ferro. "Monte Carlo Simulations of Micro-Particle Detachment and Resuspension From Surfaces in Turbulent Flows." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72148.
Full text