Dissertations / Theses on the topic 'Modèle non paramétrique et semi-paramétrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modèle non paramétrique et semi-paramétrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Knefati, Muhammad Anas. "Estimation non-paramétrique du quantile conditionnel et apprentissage semi-paramétrique : applications en assurance et actuariat." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2280/document.
Full textThe thesis consists of two parts: One part is about the estimation of conditional quantiles and the other is about supervised learning. The "conditional quantile estimate" part is organized into 3 chapters. Chapter 1 is devoted to an introduction to the local linear regression and then goes on to present the methods, the most used in the literature to estimate the smoothing parameter. Chapter 2 addresses the nonparametric estimation methods of conditional quantile and then gives numerical experiments on simulated data and real data. Chapter 3 is devoted to a new conditional quantile estimator, we propose. This estimator is based on the use of asymmetrical kernels w.r.t. x. We show, under some hypothesis, that this new estimator is more efficient than the other estimators already used. The "supervised learning" part is, too, with 3 chapters: Chapter 4 provides an introduction to statistical learning, remembering the basic concepts used in this part. Chapter 5 discusses the conventional methods of supervised classification. Chapter 6 is devoted to propose a method of transferring a semiparametric model. The performance of this method is shown by numerical experiments on morphometric data and credit-scoring data
Du, Rocher Martin. "Méthode de Denton et modèle non-paramétrique d'étalonnage." Mémoire, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/4831.
Full textLe, Thi Xuan Mai. "Estimation semi-paramétrique et application à l’évaluation de la biomasse d'anchois." Thesis, Toulouse, INSA, 2010. http://www.theses.fr/2010ISAT0006/document.
Full textThe motivation of this study is to evaluate the anchovy biomass, that is estimate the egg densities at the spawning time and the mortality rate. The data are the anchovy egg densities that are the egg weights by area unit, collected in the Gascogne bay. The problem we are faced is to estimate from these data the egg densities at the spawning time. Until now, this is done by using the classical exponential mortality model. However, such model is inadequate for the data under consideration because of the great spatial variability of the egg densities at the spawning time. They are samples of generated by a r.v whose mathematical expectation is a0 and the probability density function is fA. Therefore, we propose an extended exponential mortality model Y (tj,kj) = A (tj,kj) e-z0tj +e(tj,kj) where A(tj,kj) and e(tj,kj) are i.i.d, with the random variables A and e being assumed to be independent. Then the problem consists in estimating the mortality rate and the probability density of the random variable . We solve this semiparametric estimation problem in two steps. First, we estimate the mortality rate by fitting an exponential mortality model to averaged data. Second, we estimate the density fA by combining nonparametric estimation method with deconvolution technique and estimate the parameter z0. Theoretical results of consistence of these estimates are corroborated by simulation studies
Dellagi, Hatem. "Estimations paramétrique et non paramétrique des données manquantes : application à l'agro-climatologie." Paris 6, 1994. http://www.theses.fr/1994PA066546.
Full textViallon, Vivian. "Processus empiriques, estimation non paramétrique et données censurées." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00119260.
Full textAutin, Florent. "Point de vue maxiset en estimation non paramétrique." Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00008542.
Full textLibengue, Dobele-kpoka Francial Giscard Baudin. "Méthode non-paramétrique des noyaux associés mixtes et applications." Thesis, Besançon, 2013. http://www.theses.fr/2013BESA2007/document.
Full textWe present in this thesis, the non-parametric approach using mixed associated kernels for densities withsupports being partially continuous and discrete. We first start by recalling the essential concepts of classical continuousand discrete kernel density estimators. We give the definition and characteristics of these estimators. We also recall thevarious technical for the choice of smoothing parameters and we revisit the problems of supports as well as a resolutionof the edge effects in the discrete case. Then, we describe a new method of continuous associated kernels for estimatingdensity with bounded support, which includes the classical continuous kernel method. We define the continuousassociated kernels and we propose the mode-dispersion for their construction. Moreover, we illustrate this on the nonclassicalassociated kernels of literature namely, beta and its extended version, gamma and its inverse, inverse Gaussianand its reciprocal, the Pareto kernel and the kernel lognormal. We subsequently examine the properties of the estimatorswhich are derived, specifically, the bias, variance and the pointwise and integrated mean squared errors. Then, wepropose an algorithm for reducing bias that we illustrate on these non-classical associated kernels. Some simulationsstudies are performed on three types of estimators lognormal kernels. Also, we study the asymptotic behavior of thecontinuous associated kernel estimators for density. We first show the pointwise weak and strong consistencies as wellas the asymptotic normality. Then, we present the results of the global weak and strong consistencies using uniform andL1norms. We illustrate this on three types of lognormal kernels estimators. Subsequently, we study the minimaxproperties of the continuous associated kernel estimators. We first describe the model and we give the technicalassumptions with which we work. Then we present our results that we apply on some non-classical associated kernelsmore precisely beta, gamma and lognormal kernel estimators. Finally, we combine continuous and discrete associatedkernels for defining the mixed associated kernels. Using the tools of the unification of discrete and continuous analysis,we show the different properties of the mixed associated kernel estimators. All through this work, we choose thesmoothing parameter using the least squares cross-validation method
Sansonnet, Laure. "Inférence non-paramétrique pour des interactions poissoniennes." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00835427.
Full textVerdière, Nathalie. "Identifiabilité de systèmes d'équations aux dérivées partielles semi-discrétisées et applications à l'identifiabilité paramétrique de modèles en pharmacocinétique et en pollution." Phd thesis, Université de Technologie de Compiègne, 2005. http://tel.archives-ouvertes.fr/tel-00011838.
Full textDans cette thèse, deux modèles non linéaires en pharmacocinétique de type Michaelis-Menten ont tout d'abord été étudiés. Ensuite, nous nous sommes intéressés à un modèle de pollution décrit par une équation aux dérivées partielles parabolique. Le terme source à identifier était modélisé par le produit de la fonction débit avec la masse de Dirac, de support la position de la source polluante. Le but du travail était de fournir une première estimation de la source polluante. Après avoir obtenu l'identifiabilité du problème continu, nous avons étudié l'identifiabilité d'un problème approché en nous appuyant sur les méthodes d'algèbre différentielle. Celui-ci a été obtenu en approchant la masse de Dirac par une fonction gaussienne et en discrétisant ensuite le système en espace. Les résultats d'identifiabilité ont été obtenus quel que soit le nombre de points de discrétisation en espace. De cette étude théorique, nous en avons déduit des algorithmes numériques donnant une première estimation des paramètres à identifier.
Maillou, Balbine. "Caractérisation et identification non-paramétrique des non-linéarités de suspensions de haut-parleurs." Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1028.
Full textThis thesis deals with the low frequencies mechanical behavior of the electrodynamic loudspeaker moving part, and especially with the suspensions, whose properties are among the most difficult to identify because of both assembly geometry and intrinsic materials, leading to nonlinear viscoelastic behaviors. In small signal domain, the Thiele and Small model describes the behavior of the whole loudspeaker with a good fit, the moving part behavior being modeled by a simple linear mass-spring system, with mass, damping and stiffness parameters. In large-signal domain, this model is no longer sufficient. Our approach is then to perform nonlinear system identification as a tool helping to improve analytical models. A model without physical knowledge is chosen : « Generalized Hammerstein ». Its identification requires the acquisition of experimental signals. A multi sensor experimental set up were so carried out and allows to characterize the whole moving part of a loudspeaker, without magnetic motor, attached to a rigid stand and excited with high axial displacement values, by means of a shaker. Shaker being itself a nonlinear device, a new method of « Generalized Hammerstein » model identification was developped, dedicated to nonlinear systems in series. Finally, parameters of an «expanded Thiele and Small» model are derived from the «Generalized Hammerstein» model parameters. This allows to highlight the evolution of the stiffness and damping with the frequency of excitation, with the displacement of the membrane, as well as the dependence of observed phenomena with the excitation level
Agbodan, Dago. "Nomination persistante dans un modèle paramétrique : identification non-ambigue͏̈ et appariement générique d'entités topologiques." Poitiers, 2002. http://www.theses.fr/2002POIT2313.
Full textParametric models have a dual structure where an abstract representation (the parametric specification) references an explicit representation (the geometry). The persistent naming problem is to maintain the references between these two representations in order to be able to reevaluate the second starting from the first, in spite of modifications. The problem is to identify an entity in an initial model, then to find it in a reevaluated model. We propose to represent evolutions of the shells and faces of the modeled objects in a graph. Each entity referenced by the specification is characterized in terms of the graph nodes, and by a link to the current geometry. Matching the initial graph and a reevaluated graph throughout a revaluation, and then, searching common elements in these graphs, allows us to interpret the references and thus to maintain the link between the parametric specification and the geometry in the reevaluated object, ensuring a persistent naming
Lévy-Leduc, Céline. "Estimation semi-paramétrique de la période de fonctions périodiques inconnues dans divers modèles statistiques : théorie et applications." Paris 11, 2004. http://www.theses.fr/2004PA112146.
Full textThis thesis is devoted to semiparametric period estimation of unknown periodic functions in various statistical models as well as the construction of nonparametric tests to detect a periodic signal in the midst of noise. In chapter 1, we propose asymptotically optimal estimators of the period of an unknown periodic function and of the periods of two periodic functions from their sum corrupted by Gaussian white noise. In chapter 2, we propose a practical implementation of the period estimation method based on the ideas developed in the first chapter that we test on simulated laser vlbrometry signals. This algorithm is used in chapter 3 on real musical data. In chapter 4, we propose an estimator of the period when the observations are those of a particular almost periodic function corrupted by Gaussian white noise as well as a practical implementation of the method. This algorithm has also been tested on laser vibrometry data. In chapter 5, we propose a test in order to detect periodic functions in the midst of noise when the period of the function and the variance of noise are unknown. It is proved to be adaptive in the minimax sense and has been tested on laser vibrometry data
Verdière, Nathalie. "Identifiabilité de systèmes d'équations aux dérivées partielles semi-discrétisées et application à l'identifiabilité paramétrique de modèles en pharmacocinétique et en pollution." Compiègne, 2005. http://www.theses.fr/2005COMP1595.
Full textBefore estimating the parameters appearing in a linear or non-linear, controlled or uncontrolled, dynamical system, it is necessary to study the unicity of the parameters compared to the experimental data. This study is still called identifiability. Several methods were developed these last years, in particular the input-output method based on the use of differential algebra. The results obtained from it make it possible to set up numerical methods to obtain a first estimate of the parameters, this without any knowledge a priori of their value. This first estimate can then be used as starting point of iterative algorithms specialized in the study of the iII-posed problems: the regularization of Tikhonov. Ln this thesis, two nonlinear models in pharmacokineti~ere first of ail studied. Then, we were interested in a model of pollution described by a parabolic partial derivative equation. The source term to be identified was modelled by the product of the function flow with the Dirac mass, of support the position of the polluting source. The goal of the work was to provide a first estimate of the polluting source. After having obtained the identifiability of the continuous problem, the identifiability of an approximated model was obtained by using the step of input-output method. The approximated model was obtained by approaching the Dirac ;, mass by a Gaussian function and by discretizing the system in space then. The results of identifiability were obtained whatever the number of points of discretization in space. From this study, we deduced numerical algorithms giving a first estimate of the polluting source
Lacour, Claire. "Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées." Phd thesis, Université René Descartes - Paris V, 2007. http://tel.archives-ouvertes.fr/tel-00180107.
Full textLesquoy-de, Turckheim Élisabeth. "Tests non paramétriques et rééchantillonnage : le modèle de Cox périodique." Paris 11, 1987. http://www.theses.fr/1987PA112474.
Full textThe first part proposes two nonparametric test defined by a simulation. One compares two distributions functions in a two-by-two black design, the other tests the independence of two censored survival times. The second part is an adaptation of Cox's regression model to a counting process having a periodic underlying intensity and predictable processes as regressors. These processes are ergodic and ϕ-mixing. The underlying intensity is estimated using either an empirical distribution-type estimate or a histogram-type estimate. These two estimates are asymptotically Gaussian and equivalent, as well as the associated regression parameters estimates. Finally, the model is applied to the analysis of a feeding pattern. The third part is a. Modelling of the kinetics of drought rhizogenesis of Sinapis alba
Moumouni, Kairou. "Etude et conception d'un modèle mixte sémiparamétrique stochastique pour l'analyse des données longitudinales environnementales." Rennes 2, 2005. http://www.theses.fr/2005REN20052.
Full textThis thesis is dealing with the analysis of longitudinal data that can be encountered in environmental studies. The general approach is based on the stochastic linear mixed model, that we extend using semiparametric techniques, such as penalized cubic splines. First, estimation methods are developed for the semiparametric stochastic mixed model, and then a simulation study is performed to measure the performances of the parameter estimates. In a second part, we propose an extension of the Cook's local influence method, in order to produce a sensibility analysis of our model and detect the effect of the perturbation of the structural components of the model. Some asymptotic properties of the local influence matrix are exhibited. Finally, the proposed model is applied to two real datasets : first, the analysis of nitrate concentration measurements in different locations of a watershed ; second, the analysis of bacteriological pollution of coastal bathing waters
Coudin, Élise. "Inférence exacte et non paramétrique dans les modèles de régression et les modèles structurels en présence d'hétéroscédasticité de forme arbitraire." Thèse, Paris, EHESS, 2007. http://hdl.handle.net/1866/1506.
Full textLe, Corff Sylvain. "Estimations pour les modèles de Markov cachés et approximations particulaires : Application à la cartographie et à la localisation simultanées." Phd thesis, Telecom ParisTech, 2012. http://tel.archives-ouvertes.fr/tel-00773405.
Full textAntic, Julie. "Méthodes non-paramétriques en pharmacocinétique et/ou pharmacodynamie de population." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/935/.
Full textThis thesis studies non-parametric (NP) methods for the estimation of random-effects' distribution in non-linear mixed effect models. The objective is to evaluate the interest of these methods for population Pharmacokinetics (PK) and/or Pharmacodynamics (PD) analyses within Pharmaceutical industry. In a first step, the thesis reviews the statistical properties of four important NP methods. Besides, their practical performances are evaluated using some simulation studies, inspired from population PK analyses. The interest of NP methods is established in theory and in practice. NP methods are then for the population PK/PD analysis of an anti-diabetic drug. The aim is to evaluate the methods abilities to detect a sub-population of nonresponder patients. Some simulation studies show that two NP methods seem more capable of detecting this sub-population. The last part of the thesis is dedicated to the research of stochastic algorithms that improve the computation of NP methods. A perturbed stochastic gradient algorithm is proposed
Gayraud, Ghislaine. "Vitesses et procédures statistiques minimax dans des problèmes d'estimation et des tests d'hypothèses." Habilitation à diriger des recherches, Université de Rouen, 2007. http://tel.archives-ouvertes.fr/tel-00207687.
Full textLa première thèmatique porte sur la résolution via l'approche minimax de divers problèmes d'estimation et de tests d'hypothèses dans un cadre non-paramétrique.
En statistique Bayésienne non-paramétrique, je me suis intéressée à un problème d'estimation d'ensembles à niveau. Les résultats obtenus résultent de l'étude des propriétés asymptotiques d'estimation Bayésienne d'ensembles à niveau. Ce sont des résultats généraux au sens où la consistance et la vitesse de convergence de l'estimateur Bayésien sont établies pour une large classe de lois a priori.
La troisième thématique concerne un problème d'estimation paramétrique dans un modèle de déconvolution aveugle bruitée : il s'agit de restituer la loi du signal entrant. La consistance ainsi que la distribution asymptotique d'une nouvelle procédure d'estimation sont établies.
Dalalyan, Arnak. "Contribution à la statistique des diffusions. Estimation semiparamétrique et efficacité au second ordre.Agrégation et réduction de dimension pour le modèle de régression." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00192080.
Full textLe premier chapitre contient une description générale des résultats obtenus en les replaçant dans un contexte historique et en présentant les motivations qui nous ont animées pour étudier ces problèmes. J'y décris également de façon informelle les idées clés des démonstrations.
Au second chapitre, je présente les définitions principales nécessaires pour énoncer de façon rigoureuse les résultats les plus importants. Ce chapitre contient également une discussion plus formelle permettant de mettre en lumière certains aspects théoriques et pratiques de nos résultats.
Bijou, Mohammed. "Qualité de l'éducation, taille des classes et mixité sociale : Un réexamen à partir des méthodes à variables instrumentales et semi-paramétriques sur données multiniveaux - Cas du Maroc -." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL2004.
Full textThis thesis objective is to examine the quality of the Moroccan education system exploiting the data of the programs TIMSS and PIRLS 2011.The thesis is structured around three chapters. The first chapter examines the influence of individual student and school characteristics on school performance, as well as the important role of the school environment (effect of size and social composition). In the second chapter, we seek to estimate the optimal class size that ensures widespread success for all students at both levels, namely, the fourth year of primary school and the second year of college. The third chapter proposes to study the relationship between the social and economic composition of the school and academic performance, while demonstrating the role of social mix in student success. In order to study this relationship, we mobilize different econometric approaches, by applying a multilevel model with correction for the problem of endogeneity (chapter 1), a hierarchical semi-parametric model (chapter 2) and a contextual hierarchical semi-parametric model (chapter 3). The results show that academic performance is determined by several factors that are intrinsic to the student and also contextual. Indeed, a smaller class size and a school with a mixed social composition are the two essential elements for a favourable environment and assured learning for all students. According to our results, governments should give priority to reducing class size by limiting it to a maximum of 27 students. In addition, it is necessary to consider making the school map more flexible in order to promote social mixing at school. The results obtained allow a better understanding of the Moroccan school system, in its qualitative aspect and the justification of relevant educational policies to improve the quality of the Moroccan education system
Gendre, Xavier. "Estimation par sélection de modèle en régression hétéroscédastique." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00397608.
Full textLa première partie de cette thèse consiste dans l'étude du problème d'estimation de la moyenne et de la variance d'un vecteur gaussien à coordonnées indépendantes. Nous proposons une méthode de choix de modèle basée sur un critère de vraisemblance pénalisé. Nous validons théoriquement cette approche du point de vue non-asymptotique en prouvant des majorations de type oracle du risque de Kullback de nos estimateurs et des vitesses de convergence uniforme sur les boules de Hölder.
Un second problème que nous abordons est l'estimation de la fonction de régression dans un cadre hétéroscédastique à dépendances connues. Nous développons des procédures de sélection de modèle tant sous des hypothèses gaussiennes que sous des conditions de moment. Des inégalités oracles non-asymptotiques sont données pour nos estimateurs ainsi que des propriétés d'adaptativité. Nous appliquons en particulier ces résultats à l'estimation d'une composante dans un modèle de régression additif.
Poilleux-Milhem, Hélène. "Test de validation adaptatif dans un modèle de régression : modélisation et estimation de l'effet d'une discontinuité du couvert végétal sur la dispersion du pollen de colza." Paris 11, 2002. http://www.theses.fr/2002PA112297.
Full textThis thesis framework is the spread of genetically modified organisms in the environment. Several parametric models of the individual pollen dispersal distribution have already been proposed for homogeneous experiments (plants emitting marked pollen surrounded by the same unmarked plants). In order to predict the "genetic pollution" in an agricultural landscape, a discontinuity effect on pollen flows in a cultivated area (e. G. A road crosses a field) has to be taken into account. This effect was modelled and estimated: according to the size of the discontinuity, it may correspond to a significant acceleration of the pollen flow. Graphical diagnosis methods show that the modelling of the individual pollen dispersal distribution and of the discontinuity effect, is best fitting the data when using constant piecewise functions. Prior to using parametric models to predict genetic pollution, goodness-of-fit tools are essential. We therefore propose a goodness-of-fit test in a nonlinear Gaussian regression model, where the errors are independent and identically distributed. This test does not require any knowledge on the regression function and on the variance of the observations. It generalises the linear hypothesis tests proposed by Baraud et al (Ann. Statist. 2003, Vol. 31) to the nonlinear hypothesis. It is asymptotically of level α and a set of functions over which it is asymptotically powerful is characterized. It is rate optimal among adaptive procedures over isotropic and anisotropic Hölder classes of alternatives. It is consistent against directional alternatives that approach the null hypothesis at a rate close to the parametric rate. According to a simulation study, this test is powerful even for fixed sample sizes
Batou, Anas. "Identification des forces stochastiques appliquées à un système dynamique non linéaire en utilisant un modèle numérique incertain et des réponses expérimentales." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00472080.
Full textFontaine, Charles. "Utilisation de copules paramétriques en présence de données observationnelles : cadre théorique et modélisations." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT009/document.
Full textObservational studies (non-randomized) consist primarily of data with features that are in fact constraining within a classical statistical framework. Indeed, in this type of study, data are rarely continuous, complete, and independent of the therapeutic arm the observations are belonging to. This thesis deals with the use of a parametric statistical tool based on the dependence between the data, using several scenarios related to observational studies. Indeed, thanks to the theorem of Sklar (1959), parametric copulas have become a topic of interest in biostatistics. To begin with, we present the basic concepts of copulas, as well as the main measures of association based on the concordance founded on an analysis of the literature. Then, we give three examples of application of models of parametric copulas for as many cases of specific data found in observational studies. We first propose a strategy of modeling cost-effectiveness analysis based essentially on rewriting the joint distribution functions, while discarding the use of linear regression models. We then study the constraints relative to discrete data, particularly in a context of non-unicity of the copula function. We rewrite the propensity score, thanks to an innovative approach based on the extension of a sub-copula. Finally, we introduce a particular type of missing data: right censored data, in a regression context, through the use of semi-parametric copulas
Lehéricy, Luc. "Estimation adaptative pour les modèles de Markov cachés non paramétriques." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS550/document.
Full textDuring my PhD, I have been interested in theoretical properties of nonparametric hidden Markov models. Nonparametric models avoid the loss of performance coming from an inappropriate choice of parametrization, hence a recent interest in applications. In a first part, I have been interested in estimating the number of hidden states. I introduce two consistent estimators: the first one is based on a penalized least squares criterion, and the second one on a spectral method. Once the order is known, it is possible to estimate the other parameters. In a second part, I consider two adaptive estimators of the emission distributions. Adaptivity means that their rate of convergence adapts to the regularity of the target distribution. Contrary to existing methods, these estimators adapt to the regularity of each distribution instead of only the worst regularity. The third part is focussed on the misspecified setting, that is when the observations may not come from a hidden Markov model. I control of the prediction error of the maximum likelihood estimator when the true distribution satisfies general forgetting and mixing assumptions. Finally, I introduce a nonhomogeneous variant of hidden Markov models : hidden Markov models with trends, and show that the maximum likelihood estimators of such models is consistent
Khazaei, Soleiman. "L'estimation bayésienne semi-paramétrique et non paramétrique de fonctions contraintes." Paris 9, 2011. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2011PA090069.
Full textOlivier, Clément. "Décompositions tensorielles et factorisations de calculs intensifs appliquées à l'identification de modèles de comportement non linéaire." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM040/document.
Full textThis thesis presents a novel non-intrusive methodology to construct surrogate models of parametric physical models.The proposed methodology enables to approximate in real-time, over the entire parameter space, multiple heterogeneous quantities of interest derived from physical models.The surrogate models are based on tensor train representations built during an intensive offline computational stage.The fundamental idea of the learning stage is to construct simultaneously all tensor approximations based on a reduced number of solutions of the physical model obtained on the fly.The parsimonious exploration of the parameter space coupled with the compact tensor train representation allows to alleviate the curse of dimensionality.The approach accommodates particularly well to models involving many parameters defined over large domains.The numerical results on nonlinear elasto-viscoplastic laws show that compact surrogate models in terms of memory storage that accurately predict multiple time dependent mechanical variables can be obtained at a low computational cost.The real-time response provided by the surrogate model for any parameter value allows the implementation of decision-making tools that are particularly interesting for experts in the context of parametric studies and aim at improving the procedure of calibration of material laws
Trevezas, Samis. "Etude de l'estimation du Maximum de Vraisemblance dans des modèles Markoviens, Semi-Markoviens et Semi-Markoviens Cachés avec Applications." Phd thesis, Université de Technologie de Compiègne, 2008. http://tel.archives-ouvertes.fr/tel-00472644.
Full textCelisse, Alain. "Sélection de modèle par validation-croisée en estimation de la densité, régression et détection de ruptures." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00346320.
Full textRibereau, Pierre. "Quelques contributions à la statistique théorique et appliquée." Paris 6, 2005. http://www.theses.fr/2005PA066164.
Full textVernet, Elodie Edith. "Modèles de mélange et de Markov caché non-paramétriques : propriétés asymptotiques de la loi a posteriori et efficacité." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS418/document.
Full textLatent models have been widely used in diverse fields such as speech recognition, genomics, econometrics. Because parametric modeling of emission distributions, that is the distributions of an observation given the latent state, may lead to poor results in practice, in particular for clustering purposes, recent interest in using non parametric latent models appeared in applications. Yet little thoughts have been given to theory in this framework. During my PhD I have been interested in the asymptotic behaviour of estimators (in the frequentist case) and the posterior distribution (in the Bayesian case) in two particuliar non parametric latent models: hidden Markov models and mixture models. I have first studied the concentration of the posterior distribution in non parametric hidden Markov models. More precisely, I have considered posterior consistency and posterior concentration rates. Finally, I have been interested in efficient estimation of the mixture parameter in semi parametric mixture models
Guin, Ophélie. "Méthodes bayésiennes semi-paramétriques d'extraction et de sélection de variables dans le cadre de la dendroclimatologie." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00636704.
Full textRoget-Vial, Céline. "deux contributions à l'étude semi-paramétrique d'un modèle de régression." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00008730.
Full textVotsi, Irène. "Evaluation des risques sismiques par des modèles markoviens cachés et semi-markoviens cachés et de l'estimation de la statistique." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2058.
Full textThe first chapter describes the definition of the subject under study, the current state of science in this area and the objectives. In the second chapter, continuous-time semi-Markov models are studied and applied in order to contribute to seismic hazard assessment in Northern Aegean Sea (Greece). Expressions for different important indicators of the semi- Markov process are obtained, providing forecasting results about the time, the space and the magnitude of the ensuing strong earthquake. Chapters 3 and 4 describe a first attempt to model earthquake occurrence by means of discrete-time hidden Markov models (HMMs) and hidden semi-Markov models (HSMMs), respectively. A nonparametric estimation method is followed by means of which, insights into features of the earthquake process are provided which are hard to detect otherwise. Important indicators concerning the levels of the stress field are estimated by means of the suggested HMM and HSMM. Chapter 5 includes our main contribution to the theory of stochastic processes, the investigation and the estimation of the discrete-time intensity of the hitting time (DTIHT) for the first time referring to semi-Markov chains (SMCs) and hidden Markov renewal chains (HMRCs). A simple formula is presented for the evaluation of the DTIHT along with its statistical estimator for both SMCs and HMRCs. In addition, the asymptotic properties of the estimators are proved, including strong consistency and asymptotic normality. In chapter 6, a comparison between HMMs and HSMMs in a Markov and a semi-Markov framework is given in order to highlight possible differences in their stochastic behavior partially governed by their transition probability matrices. Basic results are presented in the general case where specific distributions are assumed for sojourn times as well as in the special case concerning the models applied in the previous chapters, where the sojourn time distributions are estimated non-parametrically. The impact of the differences is observed through the calculation of the mean value and the variance of the number of steps that the Markov chain (HMM case) and the EMC (HSMM case) need to make for visiting for the first time a particular state. Finally, Chapter 7 presents concluding remarks, perspectives and future work
Khemane, Firas. "Estimation fréquentielle par modèle non entier et approche ensembliste : application à la modélisation de la dynamique du conducteur." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2010BOR14282/document.
Full textThis thesis deals with system identification and modeling of fractional transfer functions using bounded and uncertain frequency responses. Therefor, both of fractional differentiation and integration definitions are extended into intervals. Set membership approaches are then applied to estimate coefficients and derivative orders as intervals. These methods are applied to estimate certain Linear Time Invariant systems (LTI), uncertain LTI systems and Linear Parameter Varying systems (LPV). They are notably adopted to model driver's dynamics, since most of studies on one or several individuals shave shown that the collected reactions are not identical and are varying from an experiment to another
Harari-Kermadec, Hugo. "Vraisemblance empirique généralisée et estimation semi-paramétrique." Paris 10, 2006. http://www.theses.fr/2006PA100136.
Full textEmpirical likelihood is an estimation method inspired by the classical likelihood method, but without assuming any parametric model for the distribution of the data. The empirical likelihood method can be described as the maximization of the likelihood of a discrete distribution supported by the data. It can be used to build confidence regions, as long as the parameter of interest is defined by some moment constraints. In this thesis, we will generalize the empirical likelihood method to a wide family of empirical discrepancy methods. We give in particular non asymptotic results for some well-chosen discrepancies. We will also propose an extension of empirical likelihood to Markov chains. Those theoretical results will be used in two. The first one proposes to evaluate some risk index for the exposition to methyl-mercury via sea products consumption, by taking into account several data sources. The second one evaluates the effect of social norm on obesity
Essid, Hédi. "L'induction statistique dans le modèle DEA avec inputs quasi-fixes : développements théoriques et une application au secteur de l'éducation tunisien." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50374-2007-Essid.pdf.
Full textMbaye, Moustapha. "Conception robuste en vibration et aéroélasticité des roues aubagées de turbomachines." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00529002.
Full textCastillo, Ismaël. "Estimation semi-paramétrique à l'ordre 2 et applications." Paris 11, 2006. http://www.theses.fr/2006PA112049.
Full textMabon, Gwennaëlle. "Estimation non-paramétrique adaptative pour des modèles bruités." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB020/document.
Full textIn this thesis, we are interested in nonparametric adaptive estimation problems of density in the convolution model. This framework matches additive measurement error models, which means we observe a noisy version of the random variable of interest. To carry out our study, we follow the paradigm of model selection developped by Birgé & Massart or criterion based on Lepski's method. The thesis is divided into two parts. In the first one, the main goal is to build adaptive estimators in the convolution model when both random variables of interest and errors are distributed on the nonnegative real line. Thus we propose adaptive estimators of the density along with the survival function, then of linear functionals of the target density. This part ends with a linear density aggregation procedure. The second part of the thesis deals with adaptive estimation of density in the convolution model when the distribution is unknown and distributed on the real line. To make this problem identifiable, we assume we have at hand either a preliminary sample of the noise or we observe repeated data. So, we can derive adaptive estimation with mild assumptions on the noise distribution. This methodology is then applied to linear mixed models and to the problem of density estimation of the sum of random variables when the latter are observed with an additive noise
Nacanabo, Amade. "Impact des chocs climatiques sur la sécurité alimentaire dans les pays sahéliens : approches macroéconomiques et microéconomiques." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL2007.
Full textOften used metaphorically to refer to the southern fringes of the Sahara, the Sahel's geographical position makes it a region vulnerable to climate change. Agriculture is highly rain-fed and largely dependent on climatic conditions. If food security is to be achieved in the Sahel, climate change must be taken into account. By combining empirical and theoretical work, this thesis aims to contribute to a better understanding of the impact of climate change on food security in the Sahel at the microeconomic and macroeconomic levels. The first chapter examines the food security situation in the Sahel at the macroeconomic level, after analysing its demographic dynamism. The results of this chapter show that the Sahel has not yet begun its demographic transition. The demographic growth rate is high compared with the average for sub-Saharan Africa. Undernourishment is on the decline, but remains prevalent in the region. Reducing undernourishment necessarily involves agricultural production, which is dependent on the vagaries of the climate. The second chapter therefore looks at the effects of climate change on the yields of certain crops (millet, sorghum and maize) in the Sahel. The results indicate that climate change is having an overall negative impact on agricultural yields in the Sahel. This analysis at the macroeconomic level is then supplemented by two chapters which, at the microeconomic level, focus on the behaviour of farmers in the Sahel. The third chapter seeks to analyse the impact of climatic shocks, as measured by farmers' perceptions, on the inefficiency of agricultural plots. This study shows that climatic shocks increase the inefficiency of agricultural plots. Through lower yields and plot inefficiency, climate change may affect the poverty and food vulnerability of Burkinabé farming households. To this end, the fourth chapter identifies the individual and contextual determinants of poverty and food vulnerability among farming households in Burkina Faso. The results show that, in addition to the individual characteristics of farm households, such as their size or the level of education of the head of household, the climatic context in which they live helps to explain their poverty and food vulnerability
Kamari, Halaleh. "Qualité prédictive des méta-modèles construits sur des espaces de Hilbert à noyau auto-reproduisant et analyse de sensibilité des modèles complexes." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASE010.
Full textIn this work, the problem of estimating a meta-model of a complex model, denoted m, is considered. The model m depends on d input variables X1 , ..., Xd that are independent and have a known law. The meta-model, denoted f ∗ , approximates the Hoeffding decomposition of m, and allows to estimate its Sobol indices. It belongs to a reproducing kernel Hilbert space (RKHS), denoted H, which is constructed as a direct sum of Hilbert spaces (Durrande et al. (2013)). The estimator of the meta-model, denoted f^, is calculated by minimizing a least-squares criterion penalized by the sum of the Hilbert norm and the empirical L2-norm (Huet and Taupin (2017)). This procedure, called RKHS ridge group sparse, allows both to select and estimate the terms in the Hoeffding decomposition, and therefore, to select the Sobol indices that are non-zero and estimate them. It makes possible to estimate the Sobol indices even of high order, a point known to be difficult in practice.This work consists of a theoretical part and a practical part. In the theoretical part, I established upper bounds of the empirical L2 risk and the L2 risk of the estimator f^. That is, upper bounds with respect to the L2-norm and the empirical L2-norm for the f^ distance between the model m and its estimation f into the RKHS H. In the practical part, I developed an R package, called RKHSMetaMod, that implements the RKHS ridge group sparse procedure and a spacial case of it called the RKHS group lasso procedure. This package can be applied to a known model that is calculable in all points or an unknown regression model. In order to optimize the execution time and the storage memory, except for a function that is written in R, all of the functions of the RKHSMetaMod package are written using C++ libraries GSL and Eigen. These functions are then interfaced with the R environment in order to propose an user friendly package. The performance of the package functions in terms of the predictive quality of the estimator and the estimation of the Sobol indices, is validated by a simulation study
Taupin, Marie-Luce. "Estimation semi-paramétrique pour le modèle de régression non linéaire avec erreurs sur les variables." Paris 11, 1998. http://www.theses.fr/1998PA112004.
Full textZeghnoun, Abdelkrim. "Relation à court terme entre pollution atmosphérique et santé : quelques aspects statistiques et épidémiologiques." Paris 7, 2002. http://www.theses.fr/2002PA077199.
Full textOuhbi, Brahim. "Estimation non paramétrique dans les processus semi-markoviens et application en fiabilité." Compiègne, 1997. http://www.theses.fr/1997COMP1046.
Full textBrua, Jean-Yves. "Estimation non paramétrique pour des modèles de diffusion et de régression." Phd thesis, Université Louis Pasteur - Strasbourg I, 2008. http://tel.archives-ouvertes.fr/tel-00338286.
Full textPour un modèle de régression non paramétrique et hétéroscédastique, où l'écart-type du bruit dépend à la fois du régresseur et de la fonction de régression supposée appartenir à une classe höldérienne faible de régularité connue, nous montrons qu'un estimateur à noyau est asymptotiquement efficace. Lorsque la régularité de la fonction de régression est inconnue, nous obtenons la vitesse de convergence minimax adaptative des estimateurs sur une famille de classes höldériennes. Enfin, pour un modèle de diffusion où la dérive appartient à un voisinage höldérien faible centré en une fonction lipschitzienne, nous présentons la construction d'un estimateur à noyau asymptotiquement efficace.
Koch, Erwan. "Outils et modèles pour l'étude de quelques risques spatiaux et en réseaux : application aux extrêmes climatiques et à la contagion en finance." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10138/document.
Full textThis thesis aims at developing tools and models that are relevant for the study of some spatial risks and risks in networks. The thesis is divided into five chapters. The first one is a general introduction containing the state of the art related to each study as well as the main results. Chapter 2 develops a new multi-site precipitation generator. It is crucial to dispose of models able to produce statistically realistic precipitation series. Whereas previously introduced models in the literature deal with daily precipitation, we develop a hourly model. The latter involves only one equation and thus introduces dependence between occurrence and intensity; the aforementioned literature assumes that these processes are independent. Our model contains a common factor taking large scale atmospheric conditions into account and a multivariate autoregressive contagion term accounting for local propagation of rainfall. Despite its relative simplicity, this model shows an impressive ability to reproduce real intensities, lengths of dry periods as well as the spatial dependence structure. In Chapter 3, we propose an estimation method for max-stable processes, based on simulated likelihood techniques. Max-stable processes are ideally suited for the statistical modeling of spatial extremes but their inference is difficult. Indeed the multivariate density function is not available and thus standard likelihood-based estimation methods cannot be applied. Under appropriate assumptions, our estimator is efficient as both the temporal dimension and the number of simulation draws tend towards infinity. This approach by simulation can be used for many classes of max-stable processes and can provide better results than composite-based methods, especially in the case where only a few temporal observations are available and the spatial dependence is high
Ahmed, Mohamed Salem. "Contribution à la statistique spatiale et l'analyse de données fonctionnelles." Thesis, Lille 3, 2017. http://www.theses.fr/2017LIL30047/document.
Full textThis thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country