Academic literature on the topic 'Modèle de Navier-Stokes-Cahn-Hilliard'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèle de Navier-Stokes-Cahn-Hilliard.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Modèle de Navier-Stokes-Cahn-Hilliard"

1

Sabooniha, Ehsan, Mohammad-Reza Rokhforouz, and Shahab Ayatollahi. "Pore-scale investigation of selective plugging mechanism in immiscible two-phase flow using phase-field method." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 78. http://dx.doi.org/10.2516/ogst/2019050.

Full text
Abstract:
Biotechnology has had a major effect on improving crude oil displacement to increase petroleum production. The role of biopolymers and bio cells for selective plugging of production zones through biofilm formation has been defined. The ability of microorganisms to improve the volumetric sweep efficiency and increase oil recovery by plugging off high-permeability layers and diverting injection fluid to lower-permeability was studied through experimental tests followed by multiple simulations. The main goal of this research was to examine the selective plugging effect of hydrophobic bacteria cell on secondary oil recovery performance. In the experimental section, water and aqua solution of purified Acinetobacter strain RAG-1 were injected into an oil-saturated heterogeneous micromodel porous media. Pure water injection could expel oil by 41%, while bacterial solution injection resulted in higher oil recovery efficiency; i.e., 59%. In the simulation section, a smaller part of the heterogeneous geometry was employed as a computational domain. A numerical model was developed using coupled Cahn–Hilliard phase-field method and Navier–Stokes equations, solved by a finite element solver. In the non-plugging model, approximately 50% of the matrix oil is recovered through water injection. Seven different models, which have different plugging distributions, were constructed to evaluate the influences of selective plugging mechanism on the flow patterns. Each plugging module represents a physical phenomenon which can resist the displacing phase flow in pores, throats, and walls during Microbial-Enhanced Oil Recovery (MEOR). After plugging of the main diameter route, displacing phase inevitably exit from sidelong routes located on the top and bottom of the matrix. Our results indicate that the number of plugs occurring in the medium could significantly affect the breakthrough time. It was also observed that increasing the number of plugging modules may not necessarily lead to higher ultimate oil recovery. Furthermore, it was shown that adjacent plugs to the inlet caused flow patterns similar to the non-plugging model, and higher oil recovery factor than the models with farther plugs from the inlet. The obtained results illustrated that the fluids distribution at the pore-scale and the ultimate oil recovery are strongly dependent on the plugging distribution.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Modèle de Navier-Stokes-Cahn-Hilliard"

1

Pi, Haohong. "Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.

Full text
Abstract:
Les expériences de déplacement en milieu poreux sont la méthode habituellement utilisée pour étudier l'écoulement biphasique immiscible. Cependant, malgré les aspects de reproductibilité, un inconvénient majeur est que ces expériences de type "boîte noire" ne permettent pas d'observer et de capturer les phénomènes clés à l'échelle des pores, y compris les interactions interfaciales et les détails sur la mobilisation de l'huile piégée (par exemple, la taille et la distribution des ganglions résiduels). C'est pourquoi les dispositifs micromodèles microfluidiques sont désormais largement utilisés dans les expériences de récupération assistée d'huile (EOR) en laboratoire. Ils préservent les détails structurels de la roche tout en offrant des avantages tels que la facilité de nettoyage et la répétabilité. Le suivi visuel du déplacement des fluides est particulièrement important car il peut fournir plus de détails sur le comportement des phases mouillantes et non mouillantes dans les milieux poreux, aidant à élaborer des stratégies ciblées pour améliorer les taux de récupération du pétrole. Cette thèse explore la dynamique complexe des écoulements biphasiques immiscibles en combinant des modèles de milieux poreux microfluidiques, souvent appelés « réservoir-sur-puce », avec des simulations numériques.Dans nos expériences, nous avons utilisé des techniques morphologiques pour surveiller et enregistrer le comportement de déplacement dans un écoulement biphasique, en étudiant systématiquement les effets de différents nombres capillaires (Ca) et rapports de viscosité (M) sur les mécanismes d'écoulement et la mobilisation de l'huile résiduelle. Les résultats ont indiqué que pendant l'inondation par l'eau, le déplacement présentait des caractéristiques de doigté visqueux à des valeurs plus basses de Ca et M. En augmentant le débit pour améliorer Ca de dix fois, l'huile résiduelle montrait une invasion latérale et même arrière des chemins de flux sans changements significatifs dans la taille des grappes. Avec l'augmentation de M, la taille des grappes et la taille maximale des grappes ont diminué, conduisant à une distribution plus uniforme de l'huile résiduelle et à une Sor plus faible. Le mécanisme de mobilisation de l'huile résiduelle s'est manifesté par la rupture des ganglions, les nouveaux petits ganglions formés étant mobilisés sous des pressions plus élevées. La distribution des grappes d'huile résiduelle est conforme à la théorie de percolation, où l'exposant de mise à l'échelle τ est de 2,0. Tous les résultats expérimentaux pour Sor et les valeurs de Ca correspondantes se sont regroupés sur la courbe classique de désaturation capillaire (CDC).Les résultats expérimentaux ont servi de fondement pour développer un modèle numérique utilisant une approche de champ de phase. Ce modèle, basé sur le système d'équations de Cahn-Hilliard-Navier-Stokes, capture efficacement le comportement d'écoulement biphasique de fluides immiscibles dans des domaines confinés. Il intègre les équations de conservation de la masse et de la quantité de mouvement, enrichies par la dynamique de séparation de phase et les considérations d'énergie interfaciale. Les simulations numériques, exécutées sur la plateforme d'éléments finis en source ouverte Fenics, s'alignent qualitativement et quantitativement avec les observations expérimentales, confirmant la précision du modèle pour prédire les comportements fluidiques sous diverses conditions physiques, et avançant notre compréhension de la dynamique des fluides à l'échelle des pores. Les simulations se concentrent sur l'analyse de l'influence des propriétés des fluides et des conditions opérationnelles sur les mécanismes de déplacement à l'échelle des pores
The core-flood experiments are the usual method used to study the immiscible biphasic flow. However, beside reproducibility aspects, a significant drawback is that with these black box experiments, we cannot observe and capture key phenomena at the pore scale, including interfacial interactions and details about mobilization of the trapped oil (e.g. size and distribution of residual ganglia). This is why microfluidic micromodel devices are now extensively used in lab EOR experiments. They preserve the structural details of the rock while offering advantages such as easy cleaning and repeatability. Visual tracking of fluids displacement is particularly important as it can provide more details about the behavior of wetting and non-wetting phases in porous media, aiding in targeted strategies to enhance oil recovery rates. This thesis explores the intricate dynamics of immiscible two-phase flows combines microfluidic porous medium models, often referred to as “reservoir-on-a-chip”, with numerical simulations.In our experiments, we used morphological to monitor and record displacement behavior in biphasic flow, systematically studying the effects of different capillary numbers (Ca) and viscosity ratios (M) on the flow mechanisms and the mobilization of residual oil. The results indicated that during waterflooding, displacement exhibited characteristics of viscous fingering at lower Ca and M values. By increasing the flow rate to enhance Ca tenfold, the residual oil showing lateral and even backward invasion of flow paths without significant changes in cluster size. With increasing M, both the cluster size and the maximum cluster size decreased, leading to a more uniform distribution of residual oil and lower Sor. The mobilization mechanism of residual oil manifested as ganglia breakup, with newly formed smaller ganglia being mobilized under higher pressures. The distribution of residual oil clusters is consistent with percolation theory, where the scaling exponent τ is 2.0. All experimental results for Sor and corresponding Ca values collapsed onto the classical Capillary Desaturation Curve (CDC).The experimental findings served as a foundation for developing a numerical model using a phase-field approach. This model, based on the Cahn-Hilliard-Navier-Stokes system of equations, effectively captures the bi-phasic flow behavior of immiscible fluids within confined domains. It incorporates conservation of mass and momentum equations, enhanced by phase separation dynamics and interfacial energy considerations. The numerical simulations, executed on the open-source finite element platform Fenics, align qualitatively and quantitatively with experimental observations, affirming the accuracy of model in predicting fluid behaviors under varied physical conditions, advancing our understanding of pore-scale fluid dynamics. Simulations focus on dissecting the influence of fluid properties and operational conditions on the displacement mechanisms at the pore scale
APA, Harvard, Vancouver, ISO, and other styles
2

Lapuerta, Céline. "Echanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles." Phd thesis, Université de Provence - Aix-Marseille I, 2006. http://tel.archives-ouvertes.fr/tel-00132564.

Full text
Abstract:
Lors d'un hypothétique accident majeur dans un réacteur à eau sous pression, la dégradation du coeur peut produire un bain stratifié, traversé par un flux de bulles. Ce dernier influence grandement les transferts thermiques, dont l'intensité est déterminante dans le déroulement de l'accident. Dans ce contexte, ce travail porte sur une modélisation de type interface diffuse pour l'étude d'écoulements incompressibles, anisothermes, composés de trois constituants non miscibles, sans changement de phase. Dans les méthodes à interface diffuse, l'évolution du système est décrite à travers la minimisation d'une énergie libre. L'originalité de notre approche, inspirée du modèle de Cahn-Hilliard, réside dans la forme particulière de l'énergie que nous proposons, qui permet d'avoir un modèle algébriquement et dynamiquement consistant, au sens suivant : d'une part, l'énergie libre triphasique coïncide exactement avec celle du modèle de Cahn-Hilliard diphasique quand seulement deux des phases sont présentes ; d'autre part, si une phase est initialement absente alors elle n'apparaîtra pas au cours du temps, cette dernière propriété étant stable vis à vis des erreurs numériques. L'existence et l'unicité des solutions faibles et fortes sont démontrées en dimension 2 et 3 ainsi qu'un résultat de stabilité pour les états métastables.

La modélisation d'un système ternaire en écoulement anisotherme est ensuite poursuivie par couplage des équations de Cahn-Hilliard avec celles du bilan d'énergie et de Navier-Stokes où les contraintes surfaciques sont prises en compte à travers des forces volumiques capillaires. L'ensemble est discrétisé en temps et en espace de façon à préserver les propriétés du problème continu (conservation du volume, estimation d'énergie). Différents résultats numériques sont présentés, depuis le cas de validation de l'étalement d'une lentille entre deux phases jusqu'à l'étude des transferts de masse et de chaleur à travers une interface liquide/liquide traversée par une bulle ou un train de bulles.
APA, Harvard, Vancouver, ISO, and other styles
3

Minjeaud, Sebastian. "Raffinement local adaptatif et méthodes multiniveaux pour la simulation d'écoulements multipĥasiques." Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2010. http://tel.archives-ouvertes.fr/tel-00535892.

Full text
Abstract:
Cette thèse est consacrée à l'étude de certains aspects numériques et mathématiques liés à la simulation d'écoulements incompressibles triphasiques à l'aide d'un modèle à interfaces diffuses de type Cahn-Hilliard/Navier-Stokes. La discrétisation spatiale est effectuée par éléments finis. La présence d'échelles très différentes dans le système suggère l'utilisation d'une méthode de raffinement local adaptatif. La procédure mise en place permet de tenir compte implicitement des non conformités des maillages générés, pour produire in fine des espaces d'approximation conformes. Nous montrons, en outre, qu'il est possible d'exploiter cette méthode pour construire des préconditionneurs multigrilles. Concernant la discrétisation en temps, notre étude a commencé par celle du système de Cahn-Hilliard. Pour remédier aux problèmes de convergence de la méthode de Newton utilisée pour résoudre ce système (non linéaire), nous proposons un schéma semi-implicite permettant de garantir la décroissance de l'énergie. Nous montrons l'existence et la convergence des solutions discrètes. Nous poursuivons ensuite cette étude en donnant une discrétisation en temps inconditionnellement stable du modèle complet Cahn-Hilliard/Navier-Stokes ne couplant pas fortement les deux systèmes. Nous montrons l'existence des solutions discrètes et, dans le cas où les trois fluides ont la même densité, nous montrons leur convergence. Nous étudions, pour terminer cette partie, diverses problématiques liées à l'utilisation de la méthode de projection incrémentale. Enfin, la dernière partie présente plusieurs exemples de simulations numériques, diphasiques et triphasiques, en deux et trois dimensions.
APA, Harvard, Vancouver, ISO, and other styles
4

Řehoř, Martin. "Modely s neostrým rozhraním v teorii směsí." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389829.

Full text
Abstract:
We study physical systems composed of at least two immiscible fluids occu- pying different regions of space, the so-called phases. Flows of such multi-phase fluids are frequently met in industrial applications which rises the need for their numerical simulations. In particular, the research conducted herein is motivated by the need to model the float glass forming process. The systems of interest are in the present contribution mathematically described in the framework of the so-called diffuse interface models. The thesis consists of two parts. In the modelling part, we first derive standard diffuse interface models and their generalized variants based on the concept of multi-component continuous medium and its careful thermodynamic analysis. We provide a critical assessment of assumptions that lead to different models for a given system. Our newly formulated class of generalized models of Cahn-Hilliard-Navier-Stokes-Fourier (CHNSF) type is applicable in a non-isothermal setting. Each model belonging to that class describes a mixture of separable, heat conducting Newtonian fluids that are either compressible or incompressible. The models capture capillary and thermal effects in thin interfacial regions where the fluids actually mix. In the computational part, we focus on the development of an efficient and robust...
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Modèle de Navier-Stokes-Cahn-Hilliard"

1

Chen, H., Y. Shu, B. Q. Li, P. Mohanty, and S. Sengupta. "Phase-Field Modeling of Droplet Movement Using the Discontinuous Finite Element Method." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43368.

Full text
Abstract:
In this paper, a discontinuous finite element method is presented for the fourth-order nonlinear Cahn-Hilliard equation that models multiphase flows together with the Navier-Stokes equations. A flux scheme suitable for the method is proposed and analyzed together with numerical results. The model is applied to simulate the droplet movement and numerical results are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Keunsoo, Carlos A. Dorao, Ezequiel M. Chiapero, and Maria Fernandino. "The Least Squares Spectral Element Method for the Navier-Stokes and Cahn-Hilliard Equations." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-21668.

Full text
Abstract:
The least squares spectral element method (LS-SEM) offers many advantages in the implementation of the finite element model compared with the traditional weak Galerkin method. In this article, the LS-SEM is used to solve the Navier-Stokes (NS) and the Cahn-Hilliard (CH) equations. The NS equation is solved with both C0 and C1 basis functions and their performance is compared in terms of accuracy. A two-dimensional steady-state solver is verified with the case of Kovasznay flow and validated for the cavity flow, and a two-dimensional unsteady solver is verified by a transient manufactured solution case. The phenomenon of phase separation in binary system is described by the CH equation. Due to the fourth-order characteristics of the CH equation, only a high order continuity approximation is used by employing C1 basis function for both space and time domain. The obtained solutions are in accordance with previous results from the literature and show the fundamental characteristics of the NS and CH equations. The results in this study give the possibility of developing a solver for the coupled NS and CH equations.
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Keunsoo, Carlos A. Dorao, and Maria Fernandino. "Numerical Solution of Coupled Cahn-Hilliard and Navier-Stokes System Using the Least-Squares Spectral Element Method." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1008.

Full text
Abstract:
We consider the least-squares spectral element method to solve the phase field model for two immiscible, incompressible and density-matched fluids. The coupled Cahn-Hilliard and Navier-Stokes system is selected as the numerical model, which was introduced by Hohenberg et al. [1]. The least-squares spectral element scheme is combined with a time-space formulation where both time and space domains are discretized by the same finite element approach to cope with time dependent multidimensional problems in an efficient way. C1 Hermite basis functions are applied for approximating the coupled system. An element-by-element conjugated gradient method is used to facilitate parallelization of the solver. The convergence analysis is conducted to verify our solver, and two numerical experiments are addressed to show applicability of the solver in general situations. Energy dissipation with conserved phase field at equilibrium state is confirmed through the bubble coalescence case, and the influence of the interface mobility is studied with the two-phase lid-driven cavity flow example.
APA, Harvard, Vancouver, ISO, and other styles
4

Takada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.

Full text
Abstract:
For interface-tracking simulation of two-phase flows in various micro-fluidics devices, the applicability of two versions of Navier-Stokes phase-field method (NS-PFM) was examined, combining NS equations for a continuous fluid with a diffuse-interface model based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wettability. (2) The second version successfully captures liquid-vapor motions with heat and mass transfer across interfaces in phase change of a non-ideal fluid around the critical point.
APA, Harvard, Vancouver, ISO, and other styles
5

Do-Quang, Minh, Go¨ran Stemme, Wouter van der Wijngaart, and Gustav Amberg. "Numerical Simulation of the Passage of Small Liquid Droplets Through a Thin Liquid Film." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62319.

Full text
Abstract:
We simulate numerically a novel method for dispensing, mixing and ejecting of picolitre liquid samples in a single step. The system consists of a free liquid film, suspended in a frame and positioned in front of a droplet dispenser. On impact, a picolitre droplet merges with the film, but due to its momentum, passes through and forms a droplet that separates on the other side and continues its flight. Through this process the liquid in the droplet and that in the film is mixed in a controlled way. We model the flow using the Navier-Stokes together with the Cahn-Hilliard equations. This system allows us to simulate the motion of a free surface in the presence of surface tension during merging, mixing and ejection of droplets. The influence of dispensing conditions was studied and it was found that the residual velocity of droplets after passage through the thin liquid film matches the measured velocity from the experiment well.
APA, Harvard, Vancouver, ISO, and other styles
6

Takada, Naoki, and Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.

Full text
Abstract:
The purpose of this study is to examine multi-physics computational fluid dynamics method, NS-PFM, which is a combination of Navier-Stokes (NS) equations with phase-field model (PFM) based on the free-energy theory, for interface-capturing/tracking simulation of two-phase flows. First, a new NS-PFM which we have proposed was applied to immiscible, incompressible, isothermal two-phase flow problems with a high density ratio equivalent to that of an air-water system. In this method, a Cahn-Hilliard equation was used for prediction of diffusive interface configuration. The numerical simulations demonstrated that (1) predicted collapse of two-dimensional liquid column in a gas under gravity agreed well with available data at aspect ratios of column = 1 and 2, and (2) coalescence of free-fall drops into a liquid film was successfully simulated in three dimensions. Second, we took heat transfer into account in another NS-PFM which solves a full set of NS equations and the van-der-Waals equation of state. Through a numerical simulation of a non-ideal fluid flow in the vicinity of the critical point, it was confirmed that the NS-PFM is applicable to thermal liquid-vapor flow problems with phase change.
APA, Harvard, Vancouver, ISO, and other styles
7

Takada, Naoki, Masaki Misawa, and Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.

Full text
Abstract:
For interface-tracking simulation of two-phase flows, we propose a new computational method, NS-PFM, combining Navier-Stokes (NS) equations with phase-field model (PFM). Based on the free energy theory, PFM describes an interface as a volumetric zone across which physical properties vary continuously. Surface tension is defined as an excessive free energy per unit area induced by density gradient. Consequently, PFM simplifies the interface-tracking procedure by use of a standard technique. The proposed NS-PFM was applied to several problems of incompressible, isothermal two-phase flow with the same density ratio as that of an air-water system. In this method, the Cahn-Hilliard (CH) equation was used for predicting interface configuration. It was confirmed through numerical simulations that (1) the flux driven by chemical potential gradient in the CH equation plays an important role in interfacial advection and reconstruction, (2) the NS-PFM gives good predictions for pressure increase inside a bubble caused by the surface tension, (3) coalescence of liquid film and single drop falling through a stagnant gas was well simulated, and (4) collapse of liquid column under gravity was predicted in good agreement with other available data. Then, another version of NS-PFM was proposed and applied to a direct simulation of bubble nucleation of a non-ideal fluid in the vicinity of the critical point, which demonstrated the capability of NS-PFM to capture liquid-vapor interface motion in boiling and condensation.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Zhicheng, Xiaoning Zheng, and George Karniadakis. "A Phase Field Method for Numerical Simulation of Boiling Heat Transfer." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20176.

Full text
Abstract:
Abstract The Cahn-Hilliard phase field method for two-phase flow has gained particular attention due to its unique features including its flexibility for complex morphological and topological changes, the intrinsic property of conserving mass, and the natural approach to account for the surface tension. The essential idea of the method is to use a phase field function to describe the two-phase system, while a thin smooth transition layer (interfacial area) connects the two immiscible fluids, where the value of phase field function varies continuously. The application of phase field method to two-phase flows has become more widespread recently, but to the best of our knowledge, very little progress has been made for the method being applied to the two-phase flows with phase change. This includes evaporation, condensation and boiling, which plays an important role in enhanced heat transfer in power electronics, energy, and aerospace engineering. In previous work, in order to face the challenge of large density contrast and high Reynolds number of practical engineering problems, we developed a stabilized phase field method that can handle two-phase flow with density ratio over 1000, at high Reynolds number over 10,000, and applied the method to simulate slug initiation in a long circular pipe. In this paper, inspired by the boiling model widely used in the level-set method, we propose a new boiling model that assumes that boiling takes place in the whole interfacial layer. The method is then used to solve the non-solenoidal Navier-Stokes equations. The boiling model is validated by simulating a vapor bubble growing in super-heated liquid. For this case, the growth rate of the bubble has an analytical solution, and it is used as a benchmark case in volume of fluid (VOF) and level-set methods extensively. For three different refrigerants, namely water, R134a and HFE7100, our phase field method with the boiling model can obtain accurate simulation results. Moreover, the method and model are applied to predict the three-dimensional boiling heat transfer in a rectangular micro-channel that contains a water vapor bubble with various inlet super-heat conditions. We found that the predicted bubble shape is very similar to that visualized in existing experiment. From our simulation of boiling flow using the phase field method, We have found that the required mesh resolution for the phase field method is comparable with that of VOF and level-set methods.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography