Contents
Academic literature on the topic 'Modèle de masse initiale virtuelle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèle de masse initiale virtuelle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modèle de masse initiale virtuelle"
Aziz, Abdellah, Abdelkader Iddou, and Mohand Said Ouali. "Adsorption d'Hg(II) en solution aqueuse par le laitier des hauts fourneaux." Water Quality Research Journal 42, no. 1 (February 1, 2007): 41–45. http://dx.doi.org/10.2166/wqrj.2007.006.
Full textBégin, Christian, and Louise Filion. "Morphologie et interprétation des glissements de terrain de la région de Poste-de-la-Baleine, Québec subarctique." Géographie physique et Quaternaire 41, no. 1 (December 18, 2007): 19–32. http://dx.doi.org/10.7202/032662ar.
Full textWoolschlager, J., and B. E. Rittmann. "Que mesurent les tests de CODB et de COA ?" Revue des sciences de l'eau 8, no. 3 (April 12, 2005): 371–85. http://dx.doi.org/10.7202/705229ar.
Full textBRAJKOVIC, Josip, Alison DELHASSE, and Xavier FETTWEIS. "Impact of irreducible water saturation on simulated retention capacity of the Greenland ice sheet snowpack." Bulletin de la Société Géographique de Liège, 2023, 5–17. http://dx.doi.org/10.25518/0770-7576.7061.
Full textDissertations / Theses on the topic "Modèle de masse initiale virtuelle"
Dinh, Duy Cuong. "Development of a Detailed Approach to Model the Solid Pyrolysis with the Coupling Between Solid and Gases Intra-Pores Phenomena." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0029.
Full textPyrolysis of wood is a crucial process in fire safety science because it affects the thermal decomposition and combustion behavior of materials. Wood, a composite of biopolymeric components (cellulose, hemicellulose and lignin) undergoes complex pyrolysis to yield solid char, tar and gases as it thermally decomposes. The pyrolysis process also changes some important characteristics of the sample (density, thermal conductivity, heat capacity, porosity, permeability, emissivity...) that evolve throughout the reaction. Understanding these transformations is crucial for the correct modeling of fire behavior and material response under different thermal conditions. Different final normalized mass between TGA and cone calorimeter experiments challenge existing solid reaction rate models, according to experimental studies. Current models often assume a reaction order of 1, which oversimplifies the complexity of wood pyrolysis and leads to inaccuracies when the reaction order differs from 1. To overcome these shortcomings, a brand new conversion-based model, called ”Virtual Initial Mass”, is proposed. This model, based on TGA data, calculates the reaction rate for each reaction in complicated pyrolysis mechanisms. It supports mechanisms with numerous sequential and competitive reactions and has been implemented in C++. The C++ code for this model is integrated with the DAKOTA toolkit to perform multi objective genetic algorithm (MOGA) optimization of kinetic parameters for multiple heating rates. This ”Virtual Initial Mass” model is integrated in the Porous material Analysis Toolbox based on OpenFOAM (PATO) an Open Source tool distributed by NASA. Further mass transfer, heat transfer, species conservation models in addition to material properties are created within this new framework. A computational model for secondary reactions (gas-phase reactions that produce secondary char) is implemented in PATO. These secondary reactions solidify the sample and distribute heat back into the system. Simulations of cone calorimeter tests are performed in 1D and 2D axisymmetric models to explore the influence of anisotropic wood properties, particularly the orientation of wood fibers. Comparison of models with and without secondary reactions demonstrates their role in heat distribution and secondary char production and points out the experimentally observed difference in normalized mass between TGA and cone calorimeter tests. The model is verified by comparison with experimental results to show that it can simulate the complicated behavior of wood pyrolysis as well as emphasizes the importance of reaction pathways, secondary reactions, heat transfer, mass transfer and intra-pore interaction phenomena