Dissertations / Theses on the topic 'Modèle d'efficience non paramétrique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modèle d'efficience non paramétrique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nacanabo, Amade. "Impact des chocs climatiques sur la sécurité alimentaire dans les pays sahéliens : approches macroéconomiques et microéconomiques." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL2007.
Full textOften used metaphorically to refer to the southern fringes of the Sahara, the Sahel's geographical position makes it a region vulnerable to climate change. Agriculture is highly rain-fed and largely dependent on climatic conditions. If food security is to be achieved in the Sahel, climate change must be taken into account. By combining empirical and theoretical work, this thesis aims to contribute to a better understanding of the impact of climate change on food security in the Sahel at the microeconomic and macroeconomic levels. The first chapter examines the food security situation in the Sahel at the macroeconomic level, after analysing its demographic dynamism. The results of this chapter show that the Sahel has not yet begun its demographic transition. The demographic growth rate is high compared with the average for sub-Saharan Africa. Undernourishment is on the decline, but remains prevalent in the region. Reducing undernourishment necessarily involves agricultural production, which is dependent on the vagaries of the climate. The second chapter therefore looks at the effects of climate change on the yields of certain crops (millet, sorghum and maize) in the Sahel. The results indicate that climate change is having an overall negative impact on agricultural yields in the Sahel. This analysis at the macroeconomic level is then supplemented by two chapters which, at the microeconomic level, focus on the behaviour of farmers in the Sahel. The third chapter seeks to analyse the impact of climatic shocks, as measured by farmers' perceptions, on the inefficiency of agricultural plots. This study shows that climatic shocks increase the inefficiency of agricultural plots. Through lower yields and plot inefficiency, climate change may affect the poverty and food vulnerability of Burkinabé farming households. To this end, the fourth chapter identifies the individual and contextual determinants of poverty and food vulnerability among farming households in Burkina Faso. The results show that, in addition to the individual characteristics of farm households, such as their size or the level of education of the head of household, the climatic context in which they live helps to explain their poverty and food vulnerability
Du, Rocher Martin. "Méthode de Denton et modèle non-paramétrique d'étalonnage." Mémoire, Université de Sherbrooke, 2009. http://savoirs.usherbrooke.ca/handle/11143/4831.
Full textRivoirard, Vincent. "Estimation bayésienne non paramétrique." Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00002149.
Full textRaoux, Jean-Jacques. "Modélisation non-linéaire des composants électroniques : du modèle analytique au modèle tabulaire paramétrique." Limoges, 1995. http://www.theses.fr/1995LIMO0006.
Full textMohdeb, Zaher. "Tests d'hypothèses linéaires dans un modèle de régression non paramétrique." Versailles-St Quentin en Yvelines, 1999. http://www.theses.fr/1999VERS0003.
Full textNaulet, Zacharie. "Développement d'un modèle particulaire pour la régression indirecte non paramétrique." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED057/document.
Full textThis dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements
Autin, Florent. "Point de vue maxiset en estimation non paramétrique." Phd thesis, Université Paris-Diderot - Paris VII, 2004. http://tel.archives-ouvertes.fr/tel-00008542.
Full textRoget-Vial, Céline. "deux contributions à l'étude semi-paramétrique d'un modèle de régression." Phd thesis, Université Rennes 1, 2003. http://tel.archives-ouvertes.fr/tel-00008730.
Full textViallon, Vivian. "Processus empiriques, estimation non paramétrique et données censurées." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00119260.
Full textDellagi, Hatem. "Estimations paramétrique et non paramétrique des données manquantes : application à l'agro-climatologie." Paris 6, 1994. http://www.theses.fr/1994PA066546.
Full textElamine, Abdallah Bacar. "Régression non-paramétrique pour variables fonctionnelles." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20017.
Full textThis thesis is divided in four sections with an additionnal presentation. In the first section, We expose the essential mathematics skills for the comprehension of the next sections. In the second section, we adress the problem of local non parametric with functional inputs. First, we propose an estimator of the unknown regression function. The construction of this estimator is related to the resolution of a linear inverse problem. Using a classical method of decomposition, we establish a bound for the mean square error (MSE). This bound depends on the small ball probability of the regressor which is assumed to belong to the class of Gamma varying functions. In the third section, we take again the work done in the preceding section by being situated in the frame of data belonging to a semi-normed space with infinite dimension. We establish bound for the MSE of the regression operator. This MSE can be seen as a function of the small ball probability function. In the last section, we interest to the estimation of the auxiliary function. Then, we establish the convergence in mean square and the asymptotic normality of the estimator. At last, by simulations, we study the bahavour of this estimator in a neighborhood of zero
Agbodan, Dago. "Nomination persistante dans un modèle paramétrique : identification non-ambigue͏̈ et appariement générique d'entités topologiques." Poitiers, 2002. http://www.theses.fr/2002POIT2313.
Full textParametric models have a dual structure where an abstract representation (the parametric specification) references an explicit representation (the geometry). The persistent naming problem is to maintain the references between these two representations in order to be able to reevaluate the second starting from the first, in spite of modifications. The problem is to identify an entity in an initial model, then to find it in a reevaluated model. We propose to represent evolutions of the shells and faces of the modeled objects in a graph. Each entity referenced by the specification is characterized in terms of the graph nodes, and by a link to the current geometry. Matching the initial graph and a reevaluated graph throughout a revaluation, and then, searching common elements in these graphs, allows us to interpret the references and thus to maintain the link between the parametric specification and the geometry in the reevaluated object, ensuring a persistent naming
Maillou, Balbine. "Caractérisation et identification non-paramétrique des non-linéarités de suspensions de haut-parleurs." Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1028.
Full textThis thesis deals with the low frequencies mechanical behavior of the electrodynamic loudspeaker moving part, and especially with the suspensions, whose properties are among the most difficult to identify because of both assembly geometry and intrinsic materials, leading to nonlinear viscoelastic behaviors. In small signal domain, the Thiele and Small model describes the behavior of the whole loudspeaker with a good fit, the moving part behavior being modeled by a simple linear mass-spring system, with mass, damping and stiffness parameters. In large-signal domain, this model is no longer sufficient. Our approach is then to perform nonlinear system identification as a tool helping to improve analytical models. A model without physical knowledge is chosen : « Generalized Hammerstein ». Its identification requires the acquisition of experimental signals. A multi sensor experimental set up were so carried out and allows to characterize the whole moving part of a loudspeaker, without magnetic motor, attached to a rigid stand and excited with high axial displacement values, by means of a shaker. Shaker being itself a nonlinear device, a new method of « Generalized Hammerstein » model identification was developped, dedicated to nonlinear systems in series. Finally, parameters of an «expanded Thiele and Small» model are derived from the «Generalized Hammerstein» model parameters. This allows to highlight the evolution of the stiffness and damping with the frequency of excitation, with the displacement of the membrane, as well as the dependence of observed phenomena with the excitation level
Sansonnet, Laure. "Inférence non-paramétrique pour des interactions poissoniennes." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00835427.
Full textSodjo, Jessica. "Modèle bayésien non paramétrique pour la segmentation jointe d'un ensemble d'images avec des classes partagées." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0152/document.
Full textThis work concerns the joint segmentation of a set images in a Bayesian framework. The proposed model combines the hierarchical Dirichlet process (HDP) and the Potts random field. Hence, for a set of images, each is divided into homogeneous regions and similar regions between images are grouped into classes. On the one hand, thanks to the HDP, it is not necessary to define a priori the number of regions per image and the number of classes, common or not.On the other hand, the Potts field ensures a spatial consistency. The arising a priori and a posteriori distributions are complex and makes it impossible to compute analytically estimators. A Gibbs algorithm is then proposed to generate samples of the distribution a posteriori. Moreover,a generalized Swendsen-Wang algorithm is developed for a better exploration of the a posteriori distribution. Finally, a sequential Monte Carlo sampler is defined for the estimation of the hyperparameters of the model.These methods have been evaluated on toy examples and natural images. The choice of the best partition is done by minimization of a numbering free criterion. The performance are assessed by metrics well-known in statistics but unused in image segmentation
Taupin, Marie-Luce. "Estimation semi-paramétrique pour le modèle de régression non linéaire avec erreurs sur les variables." Paris 11, 1998. http://www.theses.fr/1998PA112004.
Full textGauzère, Franck. "Approche non-paramétrique pour un modèle 3 états avec censures par intervalles : application à la dépendance." Bordeaux 2, 2000. http://www.theses.fr/2000BOR28709.
Full textLesquoy-de, Turckheim Élisabeth. "Tests non paramétriques et rééchantillonnage : le modèle de Cox périodique." Paris 11, 1987. http://www.theses.fr/1987PA112474.
Full textThe first part proposes two nonparametric test defined by a simulation. One compares two distributions functions in a two-by-two black design, the other tests the independence of two censored survival times. The second part is an adaptation of Cox's regression model to a counting process having a periodic underlying intensity and predictable processes as regressors. These processes are ergodic and ϕ-mixing. The underlying intensity is estimated using either an empirical distribution-type estimate or a histogram-type estimate. These two estimates are asymptotically Gaussian and equivalent, as well as the associated regression parameters estimates. Finally, the model is applied to the analysis of a feeding pattern. The third part is a. Modelling of the kinetics of drought rhizogenesis of Sinapis alba
Moumouni, Kairou. "Etude et conception d'un modèle mixte sémiparamétrique stochastique pour l'analyse des données longitudinales environnementales." Rennes 2, 2005. http://www.theses.fr/2005REN20052.
Full textThis thesis is dealing with the analysis of longitudinal data that can be encountered in environmental studies. The general approach is based on the stochastic linear mixed model, that we extend using semiparametric techniques, such as penalized cubic splines. First, estimation methods are developed for the semiparametric stochastic mixed model, and then a simulation study is performed to measure the performances of the parameter estimates. In a second part, we propose an extension of the Cook's local influence method, in order to produce a sensibility analysis of our model and detect the effect of the perturbation of the structural components of the model. Some asymptotic properties of the local influence matrix are exhibited. Finally, the proposed model is applied to two real datasets : first, the analysis of nitrate concentration measurements in different locations of a watershed ; second, the analysis of bacteriological pollution of coastal bathing waters
Libengue, Dobele-kpoka Francial Giscard Baudin. "Méthode non-paramétrique des noyaux associés mixtes et applications." Thesis, Besançon, 2013. http://www.theses.fr/2013BESA2007/document.
Full textWe present in this thesis, the non-parametric approach using mixed associated kernels for densities withsupports being partially continuous and discrete. We first start by recalling the essential concepts of classical continuousand discrete kernel density estimators. We give the definition and characteristics of these estimators. We also recall thevarious technical for the choice of smoothing parameters and we revisit the problems of supports as well as a resolutionof the edge effects in the discrete case. Then, we describe a new method of continuous associated kernels for estimatingdensity with bounded support, which includes the classical continuous kernel method. We define the continuousassociated kernels and we propose the mode-dispersion for their construction. Moreover, we illustrate this on the nonclassicalassociated kernels of literature namely, beta and its extended version, gamma and its inverse, inverse Gaussianand its reciprocal, the Pareto kernel and the kernel lognormal. We subsequently examine the properties of the estimatorswhich are derived, specifically, the bias, variance and the pointwise and integrated mean squared errors. Then, wepropose an algorithm for reducing bias that we illustrate on these non-classical associated kernels. Some simulationsstudies are performed on three types of estimators lognormal kernels. Also, we study the asymptotic behavior of thecontinuous associated kernel estimators for density. We first show the pointwise weak and strong consistencies as wellas the asymptotic normality. Then, we present the results of the global weak and strong consistencies using uniform andL1norms. We illustrate this on three types of lognormal kernels estimators. Subsequently, we study the minimaxproperties of the continuous associated kernel estimators. We first describe the model and we give the technicalassumptions with which we work. Then we present our results that we apply on some non-classical associated kernelsmore precisely beta, gamma and lognormal kernel estimators. Finally, we combine continuous and discrete associatedkernels for defining the mixed associated kernels. Using the tools of the unification of discrete and continuous analysis,we show the different properties of the mixed associated kernel estimators. All through this work, we choose thesmoothing parameter using the least squares cross-validation method
Le, Thi Xuan Mai. "Estimation semi-paramétrique et application à l’évaluation de la biomasse d'anchois." Thesis, Toulouse, INSA, 2010. http://www.theses.fr/2010ISAT0006/document.
Full textThe motivation of this study is to evaluate the anchovy biomass, that is estimate the egg densities at the spawning time and the mortality rate. The data are the anchovy egg densities that are the egg weights by area unit, collected in the Gascogne bay. The problem we are faced is to estimate from these data the egg densities at the spawning time. Until now, this is done by using the classical exponential mortality model. However, such model is inadequate for the data under consideration because of the great spatial variability of the egg densities at the spawning time. They are samples of generated by a r.v whose mathematical expectation is a0 and the probability density function is fA. Therefore, we propose an extended exponential mortality model Y (tj,kj) = A (tj,kj) e-z0tj +e(tj,kj) where A(tj,kj) and e(tj,kj) are i.i.d, with the random variables A and e being assumed to be independent. Then the problem consists in estimating the mortality rate and the probability density of the random variable . We solve this semiparametric estimation problem in two steps. First, we estimate the mortality rate by fitting an exponential mortality model to averaged data. Second, we estimate the density fA by combining nonparametric estimation method with deconvolution technique and estimate the parameter z0. Theoretical results of consistence of these estimates are corroborated by simulation studies
Gendre, Xavier. "Estimation par sélection de modèle en régression hétéroscédastique." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00397608.
Full textLa première partie de cette thèse consiste dans l'étude du problème d'estimation de la moyenne et de la variance d'un vecteur gaussien à coordonnées indépendantes. Nous proposons une méthode de choix de modèle basée sur un critère de vraisemblance pénalisé. Nous validons théoriquement cette approche du point de vue non-asymptotique en prouvant des majorations de type oracle du risque de Kullback de nos estimateurs et des vitesses de convergence uniforme sur les boules de Hölder.
Un second problème que nous abordons est l'estimation de la fonction de régression dans un cadre hétéroscédastique à dépendances connues. Nous développons des procédures de sélection de modèle tant sous des hypothèses gaussiennes que sous des conditions de moment. Des inégalités oracles non-asymptotiques sont données pour nos estimateurs ainsi que des propriétés d'adaptativité. Nous appliquons en particulier ces résultats à l'estimation d'une composante dans un modèle de régression additif.
Vitse, Matthieu. "Réduction de modèle pour l'analyse paramétrique de l'endommagement dans les structures en béton armé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN055/document.
Full textThis thesis is dedicated to the development of an algorithm for the resolution of nonlinear problems for which there is a variability on some of the model parameters or on the loading conditions, which are only described by their intervals of variation. This study is part of the SINAPS@ project, which aims at evaluating the uncertainties in civil engineering structures and to quantify their influence on the global mechanical response of a structure to a seismic hazard. Unlike statistical or probabilistic approaches, we rely here on a deterministic approach. However, in order to reduce the computation cost of such problems, a PGD-based reduced-order modeling approach is implemented, for which the uncertain parameters are considered as additional variables of the problem. This method was implemented into the LATIN algorithm, which uses an iterative approach to solve the nonlinear aspect of the equations of the mechanical problem. This work present the extension of the classical time-space LATIN—PGD algorithm to parametric problems for which the parameters are considered as additional variables in the definition of the quantities of interest, as well as the application of such method to a damage model with unilateral effect, highlighting a variability on both material parameters and the loading amplitude. The feasibility of such coupling is illustrated on numerical examples for reinforced concrete structures subjected to different types of cyclic loading conditions (tension—compression, bending)
Lacour, Claire. "Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées." Phd thesis, Université René Descartes - Paris V, 2007. http://tel.archives-ouvertes.fr/tel-00180107.
Full textCaouder, Nathalie. "Régression non-linéaire paramétrique : etude de méthodes pour détecter des écarts au modèle. Maquette de système expert pour l'estimation des paramètres." Paris 7, 1993. http://www.theses.fr/1993PA077132.
Full textBatou, Anas. "Identification des forces stochastiques appliquées à un système dynamique non linéaire en utilisant un modèle numérique incertain et des réponses expérimentales." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00472080.
Full textPoilleux-Milhem, Hélène. "Test de validation adaptatif dans un modèle de régression : modélisation et estimation de l'effet d'une discontinuité du couvert végétal sur la dispersion du pollen de colza." Paris 11, 2002. http://www.theses.fr/2002PA112297.
Full textThis thesis framework is the spread of genetically modified organisms in the environment. Several parametric models of the individual pollen dispersal distribution have already been proposed for homogeneous experiments (plants emitting marked pollen surrounded by the same unmarked plants). In order to predict the "genetic pollution" in an agricultural landscape, a discontinuity effect on pollen flows in a cultivated area (e. G. A road crosses a field) has to be taken into account. This effect was modelled and estimated: according to the size of the discontinuity, it may correspond to a significant acceleration of the pollen flow. Graphical diagnosis methods show that the modelling of the individual pollen dispersal distribution and of the discontinuity effect, is best fitting the data when using constant piecewise functions. Prior to using parametric models to predict genetic pollution, goodness-of-fit tools are essential. We therefore propose a goodness-of-fit test in a nonlinear Gaussian regression model, where the errors are independent and identically distributed. This test does not require any knowledge on the regression function and on the variance of the observations. It generalises the linear hypothesis tests proposed by Baraud et al (Ann. Statist. 2003, Vol. 31) to the nonlinear hypothesis. It is asymptotically of level α and a set of functions over which it is asymptotically powerful is characterized. It is rate optimal among adaptive procedures over isotropic and anisotropic Hölder classes of alternatives. It is consistent against directional alternatives that approach the null hypothesis at a rate close to the parametric rate. According to a simulation study, this test is powerful even for fixed sample sizes
Verdière, Nathalie. "Identifiabilité de systèmes d'équations aux dérivées partielles semi-discrétisées et applications à l'identifiabilité paramétrique de modèles en pharmacocinétique et en pollution." Phd thesis, Université de Technologie de Compiègne, 2005. http://tel.archives-ouvertes.fr/tel-00011838.
Full textDans cette thèse, deux modèles non linéaires en pharmacocinétique de type Michaelis-Menten ont tout d'abord été étudiés. Ensuite, nous nous sommes intéressés à un modèle de pollution décrit par une équation aux dérivées partielles parabolique. Le terme source à identifier était modélisé par le produit de la fonction débit avec la masse de Dirac, de support la position de la source polluante. Le but du travail était de fournir une première estimation de la source polluante. Après avoir obtenu l'identifiabilité du problème continu, nous avons étudié l'identifiabilité d'un problème approché en nous appuyant sur les méthodes d'algèbre différentielle. Celui-ci a été obtenu en approchant la masse de Dirac par une fonction gaussienne et en discrétisant ensuite le système en espace. Les résultats d'identifiabilité ont été obtenus quel que soit le nombre de points de discrétisation en espace. De cette étude théorique, nous en avons déduit des algorithmes numériques donnant une première estimation des paramètres à identifier.
Coudin, Élise. "Inférence exacte et non paramétrique dans les modèles de régression et les modèles structurels en présence d'hétéroscédasticité de forme arbitraire." Thèse, Paris, EHESS, 2007. http://hdl.handle.net/1866/1506.
Full textLe, Corff Sylvain. "Estimations pour les modèles de Markov cachés et approximations particulaires : Application à la cartographie et à la localisation simultanées." Phd thesis, Telecom ParisTech, 2012. http://tel.archives-ouvertes.fr/tel-00773405.
Full textKoladjo, Babagnidé François. "Estimation non paramétrique du nombre d'espèces : Application à l'étude de la faune ichtyologique du bassin du fleuve Ouëmé." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112153.
Full textThis manuscript is structured in two parts. The #rst part composed of Chapters 2to 4 deals with the problem of estimating the number of classes in a population withan application in ecology. The second part, corresponding to Chapter 5, concernsthe application of statistical methods to analyze fisheries data.In the first part, we consider a heterogeneous population split into several classes.From a sample, the numbers of observed individuals per class, also called abun-dances, are used to estimate the total number of classes in the population. In theliterature devoted to the number of classes estimation, methods based on a mix-ture of Poisson distributions seem to be the most effcient (see for example the workof Chao and Bunge (2002) in the parametric framework and that of Wang and Lind-say (2005) in a non-parametric framework). Applications of these approaches to realdata show that the distribution of abundances can be approximated by a convexdistribution. We propose a non-parametric approach to estimate the distribution ofabundances under the constraint of convexity. This constraint defines a theoreticalframework for estimating a discrete density. The problem of estimating the numberof classes is then tackled in two steps.We show on the one hand the existence and uniqueness of an estimator of adiscrete density under the constraint of convexity. Under this constraint, we provethat a discrete density can be written as a mixture of triangular distributions. Usingthe support reduction algorithm proposed by Groeneboom et al. (2008), we proposean exact algorithm to estimate the proportions in the mixture.On the other hand, the estimation procedure of a discrete convex density is usedto estimate the zero-truncated distribution of the observed abundance data. Thezero-truncated distribution estimate is then extended at zero to derive an estimateof the probability that a class is not observed. This extension is made so as tocancel the first component in the mixture of triangular distributions. An estimateof the total number of classes is obtained through a binomial model assuming thateach class appears in a sample by a Bernoulli trial. We show the convergence inlaw of the proposed estimator. On practical view, an application to real ecologicaldata is presented. The method is then compared to other concurrent methods usingsimulations.The second part presents the analysis of fisheries data collected on the Ouémériver in Benin. We propose a statistical approach for grouping species accordingto their temporal abundance profile, to estimate the stock of a species and theircatchability by artisanal fishing gears
Dalalyan, Arnak. "Contribution à la statistique des diffusions. Estimation semiparamétrique et efficacité au second ordre.Agrégation et réduction de dimension pour le modèle de régression." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00192080.
Full textLe premier chapitre contient une description générale des résultats obtenus en les replaçant dans un contexte historique et en présentant les motivations qui nous ont animées pour étudier ces problèmes. J'y décris également de façon informelle les idées clés des démonstrations.
Au second chapitre, je présente les définitions principales nécessaires pour énoncer de façon rigoureuse les résultats les plus importants. Ce chapitre contient également une discussion plus formelle permettant de mettre en lumière certains aspects théoriques et pratiques de nos résultats.
Nouisri, Amine. "Identification paramétrique en dynamique transitoire : traitement d’un problème couplé aux deux bouts." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN005/document.
Full textThis thesis deals with parameters identification in transient dynamic in case of highly noisy experimental data. One long-term goal is the derivation of a non-intrusive method dedicated to the implementation in a commercial finite element code.In this work, the modified error in the constitutive relation framework is used to treat the identification of material parameters. The minimization of the cost function under constraints leads, in the case of transient dynamics, to a « two points boundary value problem » in which the differential space-time problem involves both initial and final time conditions. This results in a problem coupling the direct and adjoint fields, whose treatment is difficult.In the first part, methods such as those based on the « Riccati equations » and the « shooting methods » have been studied. It is shown that the identification is robust even in the case of highly corrupted measures, but these methods are limited either by the implementation intrusiveness, conditioning problems or the numerical cost.In the second part, an iterative over-relaxation approach is developed and compared to the aforementioned approaches on academic problems in order to validate the interest of the method. Finally, comparisons are carried out between this approach and a « discretized » variation of the formulation introduced by Bonnet and Aquino [Inverse Problems, vol. 31, 2015]
Antic, Julie. "Méthodes non-paramétriques en pharmacocinétique et/ou pharmacodynamie de population." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/935/.
Full textThis thesis studies non-parametric (NP) methods for the estimation of random-effects' distribution in non-linear mixed effect models. The objective is to evaluate the interest of these methods for population Pharmacokinetics (PK) and/or Pharmacodynamics (PD) analyses within Pharmaceutical industry. In a first step, the thesis reviews the statistical properties of four important NP methods. Besides, their practical performances are evaluated using some simulation studies, inspired from population PK analyses. The interest of NP methods is established in theory and in practice. NP methods are then for the population PK/PD analysis of an anti-diabetic drug. The aim is to evaluate the methods abilities to detect a sub-population of nonresponder patients. Some simulation studies show that two NP methods seem more capable of detecting this sub-population. The last part of the thesis is dedicated to the research of stochastic algorithms that improve the computation of NP methods. A perturbed stochastic gradient algorithm is proposed
Verdier, Ghislain. "Détection Statistique de Rupture de Modèle dans les Systèmes Dynamiques - Application à la Supervision de Procédés de Dépollution Biologique." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2007. http://tel.archives-ouvertes.fr/tel-00221418.
Full textLes méthodes développées ici prennent en compte les caractéristiques des procédés de dépollution biologique, qui constituent l'application principale de ce travail. Ainsi, la mise au point d'une procédure, de type CUSUM, construite à partir des estimations des vraisemblances conditionnelles permet de traiter, d'une part, le cas où une partie du modèle est inconnue en utilisant une approche non paramétrique pour estimer cette partie, et d'autre part, le cas fréquemment rencontré en pratique où le système est observé indirectement. Pour ce deuxième cas, des approches de type filtrage particulaire sont utilisées.
Des résultats d'optimalité sont établies pour les approches proposées. Ces approches sont ensuite appliquées à un problème réel, un bioréacteur de retraitement des eaux usées.
Verdier, Ghislain. "Détection statistique de rupture de modèle dans les systèmes dynamiques : application à la supervision de procédés de dépollution biologique." Phd thesis, Montpellier 2, 2007. http://www.theses.fr/2007MON20200.
Full textThis thesis considers the problem of model change detection in complex dynamic systems. The goal is to develop statistical methods able to detect possible change of parameters in the model describing the system, while keeping a low rate of false alarms. This type of method is applied to the detection of anomaly or failure in many systems (navigation system, quality control. . . ). The methods developed take into account the characteristics of biotechnological processes, which are the main application of this work. Thus, the development of a CUSUM type procedure, based on estimation of conditional likelihoods enable to treat, first, the case where a part of the model is unknown by using a nonparametric approach to estimate this component, and second, the case frequently met in practice where the system is observed indirectly. In this second case, approaches such as particle filtering are used. Several results of optimality under classical constraints are established for the proposed approaches which are applied to a real problem, a bioreactor for wastewater treatment
Bennani, Youssef. "Caractérisation de la diversité d'une population à partir de mesures quantifiées d'un modèle non-linéaire. Application à la plongée hyperbare." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4128/document.
Full textThis thesis proposes a new method for nonparametric density estimation from censored data, where the censing regions can have arbitrary shape and are elements of partitions of the parametric domain. This study has been motivated by the need for estimating the distribution of the parameters of a biophysical model of decompression, in order to be able to predict the risk of decompression sickness. In this context, the observations correspond to quantified counts of bubbles circulating in the blood of a set of divers having explored a variety of diving profiles (depth, duration); the biophysical model predicts of the gaz volume produced along a given diving profile for a diver with known biophysical parameters. In a first step, we point out the limitations of the classical nonparametric maximum-likelihood estimator. We propose several methods for its calculation and show that it suffers from several problems: in particular, it concentrates the probability mass in a few regions only, which makes it inappropriate to the description of a natural population. We then propose a new approach relying both on the maximum-entropy principle, in order to ensure a convenient regularity of the solution, and resorting to the maximum-likelihood criterion, to guarantee a good fit to the data. It consists in searching for the probability law with maximum entropy whose maximum deviation from empirical averages is set by maximizing the data likelihood. Several examples illustrate the superiority of our solution compared to the classic nonparametric maximum-likelihood estimator, in particular concerning generalisation performance
Jégou, Nicolas. "Régression isotonique itérée." Phd thesis, Université Rennes 2, 2012. http://tel.archives-ouvertes.fr/tel-00776627.
Full textNguyen, Ngoc Bien. "Adaptation via des inéqualités d'oracle dans le modèle de regression avec design aléatoire." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4716/document.
Full textFrom the observation Z(n) = {(Xi, Yi), i = 1, ..., n} satisfying Yi = f(Xi) + ζi, we would like to approximate the function f. This problem will be considered in two cases of loss function, Ls-risk and uniform risk, where the condition imposed on the distribution of the noise ζi is of bounded moment and of type sub-gaussian, respectively. From a proposed family of kernel estimators, we construct a procedure, which is initialized by Goldenshluger and Lepski, to choose in this family a final estimator, with no any assumption imposed on f. Then, we show that this estimator satisfies an oracle inequality which implies the minimax and minimax adaptive estimation over the anisotropic Hölder classes
Olivier, Clément. "Décompositions tensorielles et factorisations de calculs intensifs appliquées à l'identification de modèles de comportement non linéaire." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM040/document.
Full textThis thesis presents a novel non-intrusive methodology to construct surrogate models of parametric physical models.The proposed methodology enables to approximate in real-time, over the entire parameter space, multiple heterogeneous quantities of interest derived from physical models.The surrogate models are based on tensor train representations built during an intensive offline computational stage.The fundamental idea of the learning stage is to construct simultaneously all tensor approximations based on a reduced number of solutions of the physical model obtained on the fly.The parsimonious exploration of the parameter space coupled with the compact tensor train representation allows to alleviate the curse of dimensionality.The approach accommodates particularly well to models involving many parameters defined over large domains.The numerical results on nonlinear elasto-viscoplastic laws show that compact surrogate models in terms of memory storage that accurately predict multiple time dependent mechanical variables can be obtained at a low computational cost.The real-time response provided by the surrogate model for any parameter value allows the implementation of decision-making tools that are particularly interesting for experts in the context of parametric studies and aim at improving the procedure of calibration of material laws
Duroux, Roxane. "Inférence pour les modèles statistiques mal spécifiés, application à une étude sur les facteurs pronostiques dans le cancer du sein." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066224/document.
Full textThe thesis focuses on inference of statistical misspecified models. Every result finds its application in a prognostic factors study for breast cancer, thanks to the data collection of Institut Curie. We consider first non-proportional hazards models, and make use of the marginal survival of the failure time. This model allows a time-varying regression coefficient, and therefore generalizes the proportional hazards model. On a second time, we study step regression models. We propose an inference method for the changepoint of a two-step regression model, and an estimation method for a multiple-step regression model. Then, we study the influence of the subsampling rate on the performance of median forests and try to extend the results to random survival forests through an application. Finally, we present a new dose-finding method for phase I clinical trials, in case of partial ordering
Khemane, Firas. "Estimation fréquentielle par modèle non entier et approche ensembliste : application à la modélisation de la dynamique du conducteur." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2010BOR14282/document.
Full textThis thesis deals with system identification and modeling of fractional transfer functions using bounded and uncertain frequency responses. Therefor, both of fractional differentiation and integration definitions are extended into intervals. Set membership approaches are then applied to estimate coefficients and derivative orders as intervals. These methods are applied to estimate certain Linear Time Invariant systems (LTI), uncertain LTI systems and Linear Parameter Varying systems (LPV). They are notably adopted to model driver's dynamics, since most of studies on one or several individuals shave shown that the collected reactions are not identical and are varying from an experiment to another
Gayraud, Ghislaine. "Vitesses et procédures statistiques minimax dans des problèmes d'estimation et des tests d'hypothèses." Habilitation à diriger des recherches, Université de Rouen, 2007. http://tel.archives-ouvertes.fr/tel-00207687.
Full textLa première thèmatique porte sur la résolution via l'approche minimax de divers problèmes d'estimation et de tests d'hypothèses dans un cadre non-paramétrique.
En statistique Bayésienne non-paramétrique, je me suis intéressée à un problème d'estimation d'ensembles à niveau. Les résultats obtenus résultent de l'étude des propriétés asymptotiques d'estimation Bayésienne d'ensembles à niveau. Ce sont des résultats généraux au sens où la consistance et la vitesse de convergence de l'estimateur Bayésien sont établies pour une large classe de lois a priori.
La troisième thématique concerne un problème d'estimation paramétrique dans un modèle de déconvolution aveugle bruitée : il s'agit de restituer la loi du signal entrant. La consistance ainsi que la distribution asymptotique d'une nouvelle procédure d'estimation sont établies.
Celisse, Alain. "Sélection de modèle par validation-croisée en estimation de la densité, régression et détection de ruptures." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00346320.
Full textCaron, Emmanuel. "Comportement des estimateurs des moindres carrés du modèle linéaire dans un contexte dépendant : Étude asymptotique, implémentation, exemples." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0036.
Full textIn this thesis, we consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result from Hannan (1973) who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and on the error process. Whatever the design and the error process satisfying Hannan’s conditions, we define an estimator of the asymptotic covariance matrix of the least squares estimator and we prove its consistency under very mild conditions. Then we show how to modify the usual tests on the parameter of the linear model in this dependent context. We propose various methods to estimate the covariance matrix in order to correct the type I error rate of the tests. The R package slm that we have developed contains all of these statistical methods. The procedures are evaluated through different sets of simulations and two particular examples of datasets are studied. Finally, in the last chapter, we propose a non-parametric method by penalization to estimate the regression function in the case where the errors are Gaussian and correlated
Qian, Jun. "Identification paramétrique en boucle fermée par une commande optimale basée sur l’analyse d’observabilité." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10113/document.
Full textFor online parameter identification, the developed methods here allow to design online and in closed loop optimal inputs that enrich the information in the current experience. These methods are based on real-time measurements of the process, on a dynamic nonlinear (or linear) multi-variable model, on a sensitivity model of measurements with respect to the parameters to be estimated and a nonlinear observer. Analysis of observability and predictive control techniques are used to define the optimal control which is determined online by constrained optimization. Stabilization aspects are also studied (by adding fictitious constraints or by a Lyapunov technique). Finally, for the particular case of a first order linear system, the explicit control law is developed. Illustrative examples are processed via the ODOE4OPE software : a bio-reactor, a continuous stirred tank reactor and a delta wing. These examples help to see that the parameter estimation can be performed with good accuracy in a single and less costly experiment
Bijou, Mohammed. "Qualité de l'éducation, taille des classes et mixité sociale : Un réexamen à partir des méthodes à variables instrumentales et semi-paramétriques sur données multiniveaux - Cas du Maroc -." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL2004.
Full textThis thesis objective is to examine the quality of the Moroccan education system exploiting the data of the programs TIMSS and PIRLS 2011.The thesis is structured around three chapters. The first chapter examines the influence of individual student and school characteristics on school performance, as well as the important role of the school environment (effect of size and social composition). In the second chapter, we seek to estimate the optimal class size that ensures widespread success for all students at both levels, namely, the fourth year of primary school and the second year of college. The third chapter proposes to study the relationship between the social and economic composition of the school and academic performance, while demonstrating the role of social mix in student success. In order to study this relationship, we mobilize different econometric approaches, by applying a multilevel model with correction for the problem of endogeneity (chapter 1), a hierarchical semi-parametric model (chapter 2) and a contextual hierarchical semi-parametric model (chapter 3). The results show that academic performance is determined by several factors that are intrinsic to the student and also contextual. Indeed, a smaller class size and a school with a mixed social composition are the two essential elements for a favourable environment and assured learning for all students. According to our results, governments should give priority to reducing class size by limiting it to a maximum of 27 students. In addition, it is necessary to consider making the school map more flexible in order to promote social mixing at school. The results obtained allow a better understanding of the Moroccan school system, in its qualitative aspect and the justification of relevant educational policies to improve the quality of the Moroccan education system
Porcher, Raphaël. "Éstimation d'invariants dynamiques (exposants de Lyapunov) pour des systèmes dynamiques stochastiques." Paris 6, 2002. http://www.theses.fr/2002PA066301.
Full textEssid, Hédi. "L'induction statistique dans le modèle DEA avec inputs quasi-fixes : développements théoriques et une application au secteur de l'éducation tunisien." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50374-2007-Essid.pdf.
Full textLehéricy, Luc. "Estimation adaptative pour les modèles de Markov cachés non paramétriques." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS550/document.
Full textDuring my PhD, I have been interested in theoretical properties of nonparametric hidden Markov models. Nonparametric models avoid the loss of performance coming from an inappropriate choice of parametrization, hence a recent interest in applications. In a first part, I have been interested in estimating the number of hidden states. I introduce two consistent estimators: the first one is based on a penalized least squares criterion, and the second one on a spectral method. Once the order is known, it is possible to estimate the other parameters. In a second part, I consider two adaptive estimators of the emission distributions. Adaptivity means that their rate of convergence adapts to the regularity of the target distribution. Contrary to existing methods, these estimators adapt to the regularity of each distribution instead of only the worst regularity. The third part is focussed on the misspecified setting, that is when the observations may not come from a hidden Markov model. I control of the prediction error of the maximum likelihood estimator when the true distribution satisfies general forgetting and mixing assumptions. Finally, I introduce a nonhomogeneous variant of hidden Markov models : hidden Markov models with trends, and show that the maximum likelihood estimators of such models is consistent