Academic literature on the topic 'Modèle agent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèle agent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modèle agent"
Ambler, Steve. "Les modèles à agent représentatif et la politique de taxation optimale." Articles 75, no. 4 (February 9, 2009): 539–57. http://dx.doi.org/10.7202/602302ar.
Full textTrommetter, Michel. "Irréversibilité et mesures agri-environnementales un modèle principal / agent." Économie rurale 222, no. 1 (1994): 11. http://dx.doi.org/10.3406/ecoru.1994.4918.
Full textVidal, Jean-Pierre. "L’altruisme dans le modèle à générations imbriquées." Recherches économiques de Louvain 62, no. 1 (1996): 21–42. http://dx.doi.org/10.1017/s0770451800004784.
Full textSanders, Lena. "Les villes comme agents : simulation des futurs possibles du système urbain européen." Articles hors thème 5, no. 2 (July 6, 2010): 153–80. http://dx.doi.org/10.7202/044081ar.
Full textBellosta, Marie-Jo, Imène Brigui-Chtioui, Sylvie Kornman, Suzanne Pinson, and Daniel Vanderpooten. "Système multi-agent pour des enchères multicritères Modèle et expérimentations." Revue d'intelligence artificielle 21, no. 5-6 (December 30, 2007): 703–27. http://dx.doi.org/10.3166/ria.21.703-727.
Full textMoulin, Hervé. "La présence d'envie : comment s'en accommoder?" Recherches économiques de Louvain 60, no. 1 (March 1994): 63–72. http://dx.doi.org/10.1017/s077045180000782x.
Full textPerron, Jimmy, and Bernard Moulin. "Un modèle de mémoire dans un système multi-agent de géosimulation." Revue d'intelligence artificielle 18, no. 5-6 (December 1, 2004): 647–78. http://dx.doi.org/10.3166/ria.18.647-678.
Full textMaestro, Susana Moreno. "Le Mouridisme au sein de l’immigration sénégalaise : agent de développement." Les Cahiers du Gres 6, no. 1 (April 3, 2006): 93–110. http://dx.doi.org/10.7202/012685ar.
Full textJullien, Bruno. "L'impact des options extérieures sur les échanges en information asymétrique." Revue économique 47, no. 3 (May 1, 1996): 437–46. http://dx.doi.org/10.3917/reco.p1996.47n3.0437.
Full textHoang, Thi Thanh Ha, Michel Occello, Jean-Paul Jamont, and Choukri Bey Ben Yelles. "Supervision de systèmes complexes artificiels décentralisés. Proposition d'un modèle multi-agent récursif générique." Revue d'intelligence artificielle 26, no. 5 (October 30, 2012): 569–600. http://dx.doi.org/10.3166/ria.26.569-600.
Full textDissertations / Theses on the topic "Modèle agent"
Meurisse, Thomas. "Simulation multi-agent : du modèle à l'opérationnalisation." Paris 6, 2004. http://www.theses.fr/2004PA066564.
Full textMaudet, Adrien. "Interactions entre niveaux dans un modèle orienté agent de généralisation cartographique : Le modèle DIOGEN." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1055/document.
Full textMaps show geographic information of a given area in a simplified way, particularly when the scale is small. The simplification process, called cartographic generalisation, is submitted to several constraints : legibility, adequation to the abstraction level, and consistency with reality. The will to automate the maps creation process from geographical databases led to the creation of algorithms allowing the simplification object by object. However the choice of the algorithms, as their settings, are influenced by the object on which it is applied, and by the other objects in relation with this object (e.g. a building close to another one, a road parallel to a buildings alignment). This motivates the use of multi-agents models for automated map generalisation. Several multi-agent models were proposed, each of them having a different approach to manage multi-levels relations. Here, what we call a level is, for instance, the distinction between individual agents, like a building, and agents representing a group of other agents, like a urban block composed by the surrounding roads and buildings inside.We study the unification of existing models, using the multi-level paradigm PADAWAN, in order to simplify interactions between agents in different levels. We propose the DIOGEN model, in which the principle of interactions between agents of different levels is adapted to cartographic generalisation guided by constraints, those allowing to unify the existing models AGENT, CartACom and GAEL, and giving promising features.We evaluate our proposal on different case studies. Among them, we study the generalisation of trekking maps, where the routes are symbolized individually by a different couloured line symbols, like on bus maps. The presence of several route symbols on a same road leads to specific generalisation issues, like the choice of the side of each route symbol position, or the implications for the other objects on the map (e.g. points of interest, buildings) under the route symbol – issues tackled using our proposal of formal multi-levels representation.This work leads us to the identification of recurrent behaviours. We express them as analysis patterns, in a way that is independent from cartographic generalisation and constraint solving problems
Bensaïd, Nourredine. "Contribution à la réalisation d'un modèle d'architecture multi-agent hiérarchique." Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-155.pdf.
Full textL'architecture de contrôle de MAGIQUE vise à supporter des applications complexes mettant en oeuvre un grand nombre d'agents moyennant des méthodes de communication récursives et un contrôle efficace. Des instanciations de notre modèle sont présentées pour illustrer son fonctionnement. Nous proposons notamment un système de gestion des moteurs d'inférence repartis illustrant la coopération d'un ensemble d'agents ayant des capacités d'inférence différentes. A cet effet, l'application multi-expert développée est constituée d'agents spécialistes dont les moteurs d'inférence peuvent fonctionner en chaînage avant, en chaînage arrière, ou même dans différentes logiques
Nous avons aussi appliqué notre architecture à la simulation de l'exploration d'un territoire inconnu par un ensemble de robots autonomes. Ces derniers sont représentés par des agents spécialistes qui possèdent leur propre stratégie d'exploration et qui coopèrent entre-eux directement ou indirectement via leur superviseur afin d'explorer la totalité du territoire. Les superviseurs possèdent de plus un mécanisme de régulation de charge qui permet d'équilibrer le travail des spécialistes. En conclusion, le modèle d'architecture multi-agent hiérarchique présenté à travers MAGIQUE concilie à la fois l'efficacité d'un contrôle hiérarchique, la possibilité d'appréhender l'état global d'un groupe d'agents via la structure tableau noir du superviseur, et tous les avantages de l'approche de résolution basée sur des agents autonomes. Notre modèle hiérarchique se révèle adapté pour supporter des applications client/serveur physiquement distribuées, et apporte des avantages multiples en terme de fiabilité, d'efficacité et d'adaptativité. Dans le futur, nous pensons appliquer notre architecture au problème de navigation d'un usager distant géographiquement dans un magasin virtuel
Truong, Minh Thai. "To Develop a Database Management Tool for Multi-Agent Simulation Platform." Thesis, Toulouse 1, 2015. http://www.theses.fr/2015TOU10003/document.
Full textRecently, there has been a shift from modeling driven approach to data driven approach inAgent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models (Edmonds and Moss, 2005; Hassan, 2009). In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, calibration and evaluation of the output of the simulation platform such as e.g., the water resource management and assessment system of the French Adour-Garonne Basin (Gaudou et al., 2013) and the invasion of Brown Plant Hopper on the rice fields of Mekong River Delta region in Vietnam (Nguyen et al., 2012d). That raises the question how to manage empirical data and simulation data in such agentbased simulation platform. The basic observation we can make is that currently, if the design and simulation of models have benefited from advances in computer science through the popularized use of simulation platforms like Netlogo (Wilensky, 1999) or GAMA (Taillandier et al., 2012), this is not yet the case for the management of data, which are still often managed in an ad hoc manner. Data management in ABM is one of limitations of agent-based simulation platforms. Put it other words, such a database management is also an important issue in agent-based simulation systems. In this thesis, I first propose a logical framework for data management in multi-agent based simulation platforms. The proposed framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform), and it serves several purposes: (1) model and execute multi-agent simulations, (2) manage input and output data of simulations, (3) integrate data from different sources; and (4) analyze high volume of data. Secondly, I fulfill the need for data management in ABM by the implementation of CFBM in the GAMA platform. This implementation of CFBM in GAMA also demonstrates a software architecture to combine Data Warehouse (DWH) and Online Analytical Processing (OLAP) technologies into a multi-agent based simulation system. Finally, I evaluate the CFBM for data management in the GAMA platform via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used ii not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to calibrate and validate the models.The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach
Grondin, Guillaume. "MaDcAr-Agent : un modèle d'agents auto-adaptables à base de composants." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2008. http://tel.archives-ouvertes.fr/tel-00775866.
Full textLacomme, Laurent. "Un modèle générique pour les organisations dynamiques en univers multi-agent." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENM067/document.
Full textMultiagent systems (MAS) are composed of interacting autonomous entities called agents. Their behaviors and interactions take part in the generation of a global functionality in the system. The notion of organization describes the structural and functional aspects of such systems: it includes the objectives of each agent, the way they can interact and create relationships and their importance in the system's global function. These concepts are usually formalized through notions derived from human and animal organizations: roles, groups, norms… However, an important part of MAS' organization can only be partially described with these notions: dynamics. In open MAS – where agents can enter or exit the system at any time, and where their number and characteristics are often not known at the time of the system's design – and in self-organized MAS – where the system's structure evolves with relation to context and environment – organization's dynamics is very difficult to formally describe with these high-level notions. In this thesis, we propose a model for MAS organizations' description, which is focused toward the description of a wide range of systems and the modeling of both their static and dynamic aspects. In order to achieve this, we ground our model on an approach based on emergence and computation. We then create a model based on three basic, low-level, typed static elements: agents, relations and tasks, and one low-level dynamic element: organizational mechanisms. We then propose some methods for organization description based on our model and the principle of system's constraints aggregation. We also provide some computational methods allowing the calculation of some global properties over described organizations, in order to provide a methodological help for MAS design and analysis. We then apply our model and the proposed methods on practical applications in order to show its pertinence in MAS organizations' formalization and comparison
Frezza-Buet, Hervé. "Un modèle de cortex pour le comportement motivé d'un agent neuromimétique autonome." Nancy 1, 1999. http://www.theses.fr/1999NAN10246.
Full textBen, Larbi Ramzi. "Un modèle pour la prise de décision multi-agent sous incertitude stricte." Thesis, Artois, 2009. http://www.theses.fr/2009ARTO0407/document.
Full textThe informative context in which an agent evolves is extremely important when she elaborates her futurebehaviour. A rational agent must base her choices on the available information. In realistic applications,the information is often rare and imprecise. Many models have been introduced to caracterize rationaldecision in each possible informative context. This thesis is about the elaboration of a model that allowsan agent to make rational decisions in an extremely poor informative context. The only informationthat is available to an agent about her actions’ consequences is the result set of each of her actions. Noinformation about which consequence of any action will eventually happen is available. The agent issupposed to be selfish (which means that her own interest is her only concern) and autonomous. Sheevolves in an environment in which she coexists with other agents (that are as selfish and autonomous asher). An agent action may inflence those of other agents. We used the following approach to build ourmodel. First, we caracterized the rational decision criteria for an agent to use in the context of completeignorance. Then we extended these criteria, by using game theory concepts, to a multiagent environment.Finally, the planning framework is an excellent framework to represent the introduced concepts
Hoang, Thi Thanh Ha. "Un modèle multi-agent récursif générique pour simplifier la supervision de systèmes complexes artificiels décentralisés." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM033/document.
Full textObservation of large scale artificials systems is difficult because of their dimension and their openness. This thesis proposes a model SMA-R (Recursive Multi-Agent Systems) based on recursion for multi-level observation of artificial complex systems. From a given SMA, this model is able to build multi-level of abstractions. The model's agent has a module containning knowledge, skills and context of recursion, an eye to observe changes; two mechanisms to build or destroy an abstract level, a module of recursive interaction to support collective and individual behaviors. For applying this model to SMA physically decentralized, we proposed a generic decentralized architecture for recursive agent by adopting the concepts of the OSI model which offerts forward capabilities that we look for: multi-level encapsulation, exchange of virtual and physical messages ... A generic decentralized framework was developed allowing applicatives agents to build multi-levels observation. This framework is applied to the observation of a wireless sensor network
Yoo, Min-Jung. "Une approche componentielle pour la modélisation d'agents coopératifs et leur validation." Paris 6, 1999. http://www.theses.fr/1999PA066652.
Full textBooks on the topic "Modèle agent"
Institutions, Ontario Ministry of Financial. Life agent reform : a model for qualification and licensing in Ontario =: Réforme de la profession d'agent d'assurance-vie : modèle de normes de qualités requises et de permis d'exercice en Ontario. Toronto, Ont: Ministry of Financial Institutions = Ministère des institutions financières, 1989.
Find full textCenters for Disease Control (U.S.), ed. Controlling the source of the etiologic agent: Module 10. [Atlanta, Ga.?]: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, 1988.
Find full textBakhtizin, A. R. Agent-orientirovannye modeli ėkonomiki. Moskva: Ėkonomika, 2008.
Find full textBakhtizin, A. R. Agent-orientirovannye modeli ėkonomiki. Moskva: Ėkonomika, 2008.
Find full textSchaefer, Robert, and Stanisław Sędziwy. Advances in multi-agent systems. Kraków: Wydawn. Uniwersytetu Jagiellońskiego, 2001.
Find full textShlapak, David A. Green agent user's guide. Santa Monica: Rand Corporation, 1988.
Find full textEuropean Workshop on Modelling Autonomous Agents in a Multi-Agent World (7th 1996 Eindhoven, Netherlands). Agents breaking away: 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW '96, Eindhoven, Netherlands, January 22-25, 1996 : proceedings. Berlin: Springer, 1996.
Find full textAgent-based computer simulation of dichotomous economic growth. Boston: Kluwer Academic, 2000.
Find full textThe representative agent in macroeconomics. London: Routledge, 1997.
Find full textGoudriaan, René. A principal-agent model of conditional grants. Rotterdam, Netherlands: Erasmus University Rotterdam, 1990.
Find full textBook chapters on the topic "Modèle agent"
Boudiaf, Noura, Farid Mokhati, Mourad Badri, and Linda Badri. "Specifying DIMA Multi-agents Models Using Maude." In Intelligent Agents and Multi-Agent Systems, 29–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-32128-6_3.
Full textNguyen, Ngoc Doanh, Alexis Drogoul, and Pierre Auger. "Methodological Steps and Issues When Deriving Individual Based-Models from Equation-Based Models: A Case Study in Population Dynamics." In Intelligent Agents and Multi-Agent Systems, 295–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89674-6_33.
Full textMaialeh, Robin. "Who Are Agents in Agent-Based Economic Models?" In Dynamic Models and Inequality, 67–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46313-7_4.
Full textPurvis, Maryam, Bastin Tony Roy Savarimuthu, and Martin Purvis. "Evaluation of a Multi-agent Based Workflow Management System Modeled Using Coloured Petri Nets." In Intelligent Agents and Multi-Agent Systems, 206–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-32128-6_16.
Full textVidal, José M., and Edmund H. Durfee. "Using recursive agent models effectively." In Intelligent Agents II Agent Theories, Architectures, and Languages, 171–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3540608052_66.
Full textOsborne, Martin J., and Ariel Rubinstein. "A market with asymmetric information." In Models in Microeconomic Theory, 203–14. 2nd ed. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0361.14.
Full textOsborne, Martin J., and Ariel Rubinstein. "A market with asymmetric information." In Models in Microeconomic Theory, 203–14. 2nd ed. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0362.14.
Full textBarachini, Franz, and Christian Stary. "Agent-Based Stochastic Simulation of Emotions." In From Digital Twins to Digital Selves and Beyond, 63–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96412-2_8.
Full textAl-Shamaileh, Mohammad, Patricia Anthony, and Stuart Charters. "Evaluating Trust and Reputation Models for IoT Environment." In Agents and Multi-Agent Systems: Technologies and Applications 2022, 49–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3359-2_5.
Full textLomuscio, Alessio, and Mark Ryan. "On the relation between interpreted systems and Kripke models." In Agents and Multi-Agent Systems Formalisms, Methodologies, and Applications, 46–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055019.
Full textConference papers on the topic "Modèle agent"
Palmieri, Francesco, Krishna Pattipati, Giovanni Di Gennaro, Amedeo Buonanno, and Martina Merola. "Multiple Agents Interacting via Probability Flows on Factor Graphs." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003761.
Full textHegde, Aditya, Vibhav Agarwal, and Shrisha Rao. "Ethics, Prosperity, and Society: Moral Evaluation Using Virtue Ethics and Utilitarianism." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/24.
Full textWang, Shilong, Jian Yi, Xia Hong, and Z. Zhang. "Heterogeneous Autonomous Agent Architecture for Agile Manufacturing." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34397.
Full textRajaratnam, David, and Michael Thielscher. "Representing and Reasoning with Event Models for Epistemic Planning." In 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/49.
Full textvon der Osten, Friedrich Burkhard, Michael Kirley, and Tim Miller. "The Minds of Many: Opponent Modeling in a Stochastic Game." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/537.
Full textVan Lier, Maud. "Understanding Large Language Models through the Lens of Artificial Agency." In 35th Annual Workshop of the Swedish Artificial Intelligence Society SAIS 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp199008.
Full textLeamy, Michael J. "A Systematic Approach for Aligning ODE and Agent-Based Models: Application to Epidemiological Modeling." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49291.
Full textCao, Hua-Jun, Yu-Cheng Chou, and Harry H. Cheng. "Mobile Agent Based Integration Framework for Flexible Dynamic Job Shop Scheduling." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87623.
Full textWang, Chun, Weiming Shen, and Hamada Ghenniwa. "Negotiation in Agent Based Manufacturing Scheduling Using Auction Models." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80905.
Full textTian, Yu, Xingliang Huang, Ruigang Niu, Hongfeng Yu, Peijin Wang, and Xian Sun. "Hypertron: Explicit Social-Temporal Hypergraph Framework for Multi-Agent Forecasting." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/189.
Full textReports on the topic "Modèle agent"
Schreiber, Craig, Siddhartha Singh, and Kathleen M. Carley. Construct - A Multi-Agent Network Model for the Co-Evolution of Agents and Socio-Cultural Environments. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada460028.
Full textShukla, Indu, Rajeev Agrawal, Kelly Ervin, and Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), November 2023. http://dx.doi.org/10.21079/11681/47850.
Full textKondratenko, Larysa O., Hanna T. Samoylenko, Arnold E. Kiv, Anna V. Selivanova, Oleg I. Pursky, Tetyana O. Filimonova, and Iryna O. Buchatska. Computer simulation of processes that influence adolescent learning motivation. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4452.
Full textParikh, Nidhi, Lauren Castro, Christopher Neale, Sara Del Valle, and Carrie Manore. Agent-Based Models for COVID-19. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1968177.
Full textLakkaraju, Kiran, Jonathan H. Whetzel, Jina Lee, Asmeret Brooke Bier, Rogelio E. Cardona-Rivera, and Jeremy Ray Rhythm Bernstein. Validating agent based models through virtual worlds. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1147200.
Full textBackus, David, Mikhail Chernov, and Stanley Zin. Sources of Entropy in Representative Agent Models. Cambridge, MA: National Bureau of Economic Research, July 2011. http://dx.doi.org/10.3386/w17219.
Full textAcharya, Sushant, William Chen, Marco Del Negro, Keshav Dogra, Aidan Gleich, Shlok Goyal, Ethan Matlin, Donggyu Lee, Reca Sarfati, and Sikata Sengupta. Estimating HANK for Central Banks. Federal Reserve Bank of New York, August 2023. http://dx.doi.org/10.59576/sr.1071.
Full textEdmunds, T. Agent-based Disease Surveillance and Transmission Model. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1835684.
Full textGeller, Armando, Claudio Cioffi-Revilla, Maciej M. Latek, Seyed M. Mussavi Rizi, Anamaria Berea, Joseph F. Harrison, Matthew Revelle, and Hoda Osman. Forecasting Irregular Warfare via Agent-Based Network Models. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada546483.
Full textBilal, Adrien. Solving Heterogeneous Agent Models with the Master Equation. Cambridge, MA: National Bureau of Economic Research, April 2023. http://dx.doi.org/10.3386/w31103.
Full text