Academic literature on the topic 'Model of the color vision'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Model of the color vision.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Model of the color vision"
Yoder, Lane. "Relative absorption model of color vision." Color Research & Application 30, no. 4 (2005): 252–64. http://dx.doi.org/10.1002/col.20121.
Full text김하나, 이지영, and 이지호. "Color Model Development of Color Conversion Technology for Color Vision Defectives." Journal of Korea Society of Color Studies 28, no. 2 (May 2014): 49–58. http://dx.doi.org/10.17289/jkscs.28.2.201405.49.
Full textMassof, Robert W. "Color-vision theory and linear models of color vision." Color Research & Application 10, no. 3 (1985): 133–46. http://dx.doi.org/10.1002/col.5080100302.
Full textBONNARDEL, VALÉRIE. "Color naming and categorization in inherited color vision deficiencies." Visual Neuroscience 23, no. 3-4 (May 2006): 637–43. http://dx.doi.org/10.1017/s0952523806233558.
Full textJetsu, Tuija, Yasser Essiarab, Ville Heikkinen, Timo Jaaskelainen, and Jussi Parkkinen. "Color classification using color vision models." Color Research & Application 36, no. 4 (November 8, 2010): 266–71. http://dx.doi.org/10.1002/col.20632.
Full textChittka, Lars. "BEE COLOR VISION IS OPTIMAL FOR CODING FLOWER COLOR, BUT FLOWER COLORS ARE NOT OPTIMAL FOR BEING CODED—WHY?" Israel Journal of Plant Sciences 45, no. 2-3 (May 13, 1997): 115–27. http://dx.doi.org/10.1080/07929978.1997.10676678.
Full textValberg, Arne, and Thorstein Seim. "Neurophysiological correlates of color vision: A model." Psychology & Neuroscience 6, no. 2 (2013): 213–18. http://dx.doi.org/10.3922/j.psns.2013.2.09.
Full textGuth, S. Lee. "Model for color vision and light adaptation." Journal of the Optical Society of America A 8, no. 6 (June 1, 1991): 976. http://dx.doi.org/10.1364/josaa.8.000976.
Full textFry, Glenn A. "Color vision model of macLeod and Boynton." Color Research & Application 14, no. 3 (June 1989): 152–56. http://dx.doi.org/10.1002/col.5080140309.
Full textOhkoba, Minoru, Tomoharu Ishikawa, Shoko Hira, Sakuichi Ohtsuka, and Miyoshi Ayama. "Analysis of Hue Circle Perception of Congenital Red-green Congenital Color Deficiencies Based on Color Vision Model." Color and Imaging Conference 2020, no. 28 (November 4, 2020): 105–8. http://dx.doi.org/10.2352/issn.2169-2629.2020.28.15.
Full textDissertations / Theses on the topic "Model of the color vision"
Liu, Yan. "Negative feedback control of the visual system and systematic colors vision model /." Online version of thesis, 1991. http://hdl.handle.net/1850/11211.
Full textSkaff, Sandra. "Spectral models for color vision." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66750.
Full textCette thèse introduit une approche par entropie maximale pour la modélisation des spectres de réflectance de surface. Un spectre de réflectance est la quantité de lumière, relative à la lumière incidente, réfléchie d'une surface à chaque longueur d'onde. Bien que la couleur d'une surface puisse prendre la forme d'un vecteur 3D tel que RGB, CMY ou YIQ, cette thèse prend le spectre de réflectance de surface comme étant la couleur d'une surface. Un spectre de réflectance est une propriété physique d'une surface et ne varie pas avec les différentes interactions que peut subir une surface avec son environnement. Par conséquent, les modèles de spectres de réflectance peuvent être utilisés pour fusionner les réponses de senseurs de caméra provenant de différentes images d'une même surface ou de multiples surfaces de la même scène. Cette fusion améliore les estimés spectraux qui peuvent être obtenus et mène donc à de meilleurs estimés de couleurs de surfaces.La motivation pour l'utilisation d'une approche par entropie maximale provient du fait que les surfaces observées dans notre environnement habituel ont typiquement un spectre large et donc à haute entropie. De plus, l'approche par entropie maximale impose le moins de contraintes puisqu'elle estime les spectres de réflectance de surface à l'aide seulement des réponses de senseurs de caméra. Ceci est un avantage majeur par rapport aux très répandues représentations spectrales par fonctions de base linéaires qui requièrent une série pré-spécifiée de fonctions de base.Les résultats expérimentaux montrent que les spectres de surface de taches de surface de Munsell et de papier de construction peuvent être estimés avec succès en utilisant l'approche par entropie maximal dans le cas de trois différentes interactions de surfaces avec l'environnement. D'abord, dans le cas de changements dans l'illumination, la t
Shayeghpour, Omid. "Improving information perception from digital images for users with dichromatic color vision." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-101984.
Full textLau, Hoi Ying. "Neural inspired color constancy model based on double opponent neurons /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20LAU.
Full textMachado, Gustavo Mello. "A model for simulation of color vision deficiency and a color contrast enhancement technique for dichromats." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/26950.
Full textColor vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualizationrelated tasks. This has a significant impact on their private and professional lives. This thesis presents a physiologically-based model for simulating color perception. Besides modeling normal color vision, it also accounts for the hereditary and most prevalent cases of color vision deficiency (i.e., protanopia, deuteranopia, protanomaly, and deuteranomaly), which together account for approximately 99.96% of all CVD cases. This model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. The proposed model was validated through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. This model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals. This thesis also presents an automatic image-recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. This approach can be efficiently implemented on GPUs, and for typical image sizes it is up to two orders of magnitude faster than the current state-of-the-art technique. Unlike previous approaches, the proposed technique preserves temporal coherence and, therefore, is suitable for video recoloring. This thesis demonstrates the effectiveness of the proposed technique by integrating it into a visualization system and showing, for the first time, real-time high-quality recolored visualizations for dichromats.
Kim, Taek Gyu. "Comparing color appearance models using pictorial images /." Online version of thesis, 1994. http://hdl.handle.net/1850/11756.
Full textSpencer, Lisa. "REAL-TIME MONOCULAR VISION-BASED TRACKING FOR INTERACTIVE AUGMENTED REALITY." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4289.
Full textPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Jeong, Kideog. "OBJECT MATCHING IN DISJOINT CAMERAS USING A COLOR TRANSFER APPROACH." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/434.
Full textPirrotta, Elizabeth. "Testing chromatic adaptation models using object colors /." Online version of thesis, 1994. http://hdl.handle.net/1850/11674.
Full textZapata, Iván R. "Detecting humans in video sequences using statistical color and shape models." [Gainesville, Fla.] : University of Florida, 2001. http://etd.fcla.edu/etd/uf/2001/anp1058/ivan%5Fthesis2.pdf.
Full textTitle from first page of PDF file. Document formatted into pages; contains viii, 49 p.; also contains graphics. Vita. Includes bibliographical references (p. 47-48).
Books on the topic "Model of the color vision"
CIE Technical Committee TC-8-01. A colour appearance model for colour management systems: CIEAMO2. Vienna, Austria: CIE Central Bureau, 2004.
Find full textColor appearance models. Reading, Mass: Addison-Wesley, 1998.
Find full textFairchild, Mark D. Color Appearance Models. New York: John Wiley & Sons, Ltd., 2005.
Find full textXing, Jing. Reexamination of color vision standards. Washington, D.C: Federal Aviation Administration, Office of Aerospace Medicine, 2006.
Find full textUntersuchungen zur Farbästhetik im späten Schulkind- und Jugendalter: Ein Modell zur ästhetischen Wahrnehmung von Farbe und zur Gestaltung von Farbwirkungen durch ästhetische Organisation gewählter Farben. Frankfurt am Main: Lang, 1990.
Find full textColor vision. New York: AMPHOTO, 1989.
Find full textM, Boynton Robert, ed. Human color vision. 2nd ed. Washington, DC: Optical Society of America, 1996.
Find full textHuman color vision. [Washington, DC]: Optical Society of America, 1992.
Find full textValberg, Arne. Light Vision Color. New York: John Wiley & Sons, Ltd., 2006.
Find full textKremers, Jan, Rigmor C. Baraas, and N. Justin Marshall, eds. Human Color Vision. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44978-4.
Full textBook chapters on the topic "Model of the color vision"
Tominaga, Shoji. "Color Model." In Computer Vision, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_449-1.
Full textTominaga, Shoji. "Color Model." In Computer Vision, 116–20. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_449.
Full textTominaga, Shoji. "Color Model." In Computer Vision, 176–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_449.
Full textBai, Xue, Jue Wang, and Guillermo Sapiro. "Dynamic Color Flow: A Motion-Adaptive Color Model for Object Segmentation in Video." In Computer Vision – ECCV 2010, 617–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15555-0_45.
Full textSyeda-Mahmood, Tanveer Fathima. "Data and model-driven selection using color regions." In Computer Vision — ECCV'92, 115–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55426-2_14.
Full textBäuml, Karl-Heinz, Xuemei Zhang, and Brian Wandell. "Color Spaces and Color Metrics." In Vision Models and Applications to Image and Video Processing, 99–122. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3411-9_6.
Full textFry, Glenn A. "König Models of Color Vision." In Colour Vision Deficiencies IX, 117–24. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2695-0_14.
Full textIwaki, Ryuichi, and Michinari Shimoda. "Electronic Circuit Model of Color Sensitive Retinal Cell Network." In Biologically Motivated Computer Vision, 482–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45482-9_49.
Full textLu, Chenguang. "Explaining Color Evolution, Color Blindness, and Color Recognition by the Decoding Model of Color Vision." In IFIP Advances in Information and Communication Technology, 287–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46931-3_27.
Full textAlarcon, Teresa, and Oscar Dalmau. "Color Categorization Models for Color Image Segmentation." In Lecture Notes in Computational Vision and Biomechanics, 303–27. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7584-8_10.
Full textConference papers on the topic "Model of the color vision"
Moorhead, Ian R. "Computational color vision model." In Photonics West '98 Electronic Imaging, edited by Bernice E. Rogowitz and Thrasyvoulos N. Pappas. SPIE, 1998. http://dx.doi.org/10.1117/12.320155.
Full textWang, Haihui. "A model of color vision with a robot system." In ICO20:Illumination, Radiation, and Color Technologies, edited by Dazun Zhao, M. R. Luo, and Hirohisa Yaguchi. SPIE, 2006. http://dx.doi.org/10.1117/12.668080.
Full textGuth, S. Lee. "ATD model for color vision II: applications." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Eric Walowit. SPIE, 1994. http://dx.doi.org/10.1117/12.173844.
Full textNonaka, Takako, Morimasa Matsuda, and Tomohiro Hase. "Color Mixture Model Based on Spatial Frequency Response of Color Vision." In 2006 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icsmc.2006.384395.
Full textZhang, Shengdong, Yue Wu, Yuanjie Zhao, Zuomin Cheng, and Wenqi Ren. "Color-Constrained Dehazing Model." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00443.
Full textYuxin Peng, Yuxin Jin, Kezhong He, Fuchun Sun, Huaping Liu, and Linmi Tao. "Color Model based real-time Face Detection with AdaBoost in color image." In 2007 International Conference on Machine Vision. IEEE, 2007. http://dx.doi.org/10.1109/icmv.2007.4469270.
Full textChakrabarti, Ayan, Daniel Scharstein, and Todd Zickler. "An Empirical Camera Model for Internet Color Vision." In British Machine Vision Conference 2009. British Machine Vision Association, 2009. http://dx.doi.org/10.5244/c.23.51.
Full textDe Valois, Russell L. "Standard model of color vision: problems and an alternative." In Computational Vision Based on Neurobiology, edited by Teri B. Lawton. SPIE, 1994. http://dx.doi.org/10.1117/12.171148.
Full textGuth, S. Lee. "Further applications of the ATD model for color vision." In IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, edited by Eric Walowit. SPIE, 1995. http://dx.doi.org/10.1117/12.206546.
Full textRao, Xiuqin, and Yibin Ying. "Color model for fruit quality inspection with machine vision." In Optics East 2005, edited by Yud-Ren Chen, George E. Meyer, and Shu-I. Tu. SPIE, 2005. http://dx.doi.org/10.1117/12.630504.
Full textReports on the topic "Model of the color vision"
Engel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full textKrauskopf, John. Higher Order Mechanisms of Color Vision. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada214616.
Full textKrauskopf, John. Higher Order Mechanisms of Color Vision. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada198093.
Full textLaxar, Kevin V. U.S. Navy Color Vision Standards Revisited. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada347110.
Full textKrauskopf, John. Higher Order Mechanisms of Color Vision. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada244720.
Full textJacob J. Jacobson, Robert F. Jeffers, Gretchen E. Matthern, Steven J. Piet, Benjamin A. Baker, and Joseph Grimm. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/968564.
Full textLindquist, Goerge H., J. Richard Freeling, and Allyn W. Dunstan. Computational Vision Model (CVM) Research and Development. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada361237.
Full textSyeda-Mahmood, Tanveer F. Data and Model-Driven Selection Using Color Regions. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada260101.
Full textChang, Huey, Katsushi Ikeuchi, and Takeo Kanade. Model-Based Vision System by Object-Oriented Programming. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada195819.
Full textKrnjaic, Gordan Zdenko. Dark Matter and Color Octets Beyond the Standard Model. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1127922.
Full text