Academic literature on the topic 'Model-Based Deep Learning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Model-Based Deep Learning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Model-Based Deep Learning"

1

Wu, Chong. "A Credit Risk Predicting Hybrid Model Based on Deep Learning Technology." International Journal of Machine Learning and Computing 11, no. 3 (May 2021): 182–87. http://dx.doi.org/10.18178/ijmlc.2021.11.3.1033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srinivas, Dr Kalyanapu, and Reddy Dr.B.R.S. "Deep Learning based CNN Optimization Model for MR Braing Image Segmentation." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11 (November 20, 2019): 213–20. http://dx.doi.org/10.5373/jardcs/v11i11/20193190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, A.-Hyun, Hyeongho Bae, Young-Ky Kim, and Chong-kwon Kim. "Deep Reinforcement Learning based MCS Decision Model." Journal of KIISE 49, no. 8 (August 31, 2022): 663–68. http://dx.doi.org/10.5626/jok.2022.49.8.663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohammed, Amal Ahmed Hasan, and Jiazhou Chen. "Cleanup Sketched Drawings: Deep Learning-Based Model." Applied Bionics and Biomechanics 2022 (May 6, 2022): 1–17. http://dx.doi.org/10.1155/2022/2238077.

Full text
Abstract:
Rough drawings provide artists with a simple and efficient way to express shapes and ideas. Artists frequently use sketches to highlight their envisioned curves, using several groups’ raw strokes. These rough sketches need enhancement to remove some subtle impurities and completely simplify curves over the sketched images. This research paper proposes using a fully convolutional network (FCNN) model to simplify rough raster drawings using deep learning. As input, the FCNN takes a sketch image of any size and automatically generates a high-quality simplified sketch image as output. Our model intuitively addresses the shortcomings in the rough sketch image, such as noises and unwanted background, as well as the low resolution of the rough sketch image. The FCNN model is trained by three raster image datasets, which are publicly available online. This paper demonstrates the efficiency and effectiveness of using deep learning in cleaning and improving the roughly drawn image in an automatic way. For evaluating the results, the mean squared error (MSE) metric was used. From experimental results, it was observed that an enhanced FCNN model reported better accuracy, reducing the prediction error by 0.08 percent for simplifying the rough sketch compared to the existing methods.
APA, Harvard, Vancouver, ISO, and other styles
5

Jing, Jing. "Deep Learning-Based Music Quality Analysis Model." Applied Bionics and Biomechanics 2022 (June 13, 2022): 1–6. http://dx.doi.org/10.1155/2022/6213115.

Full text
Abstract:
In order to build an efficient and effective deep much quality recognition model, a decision fusion method by leveraging the advantages of shallow learning and deep learning is formulated. In the literature, shallow learning is a traditional music-related quality recognition method, that is, artificial statistical feature extraction and recognition are designed. Meanwhile, our deep learning module leverages the so-called PCANET network to implement the feature extraction process, and subsequently takes the spectrogram describing the music-related information as the network input. First, a variety of task classifications for the music signal problem are divided. Afterward, the optimization and adoption of deep learning in the two major problems of music feature extraction and sequence modeling are introduced. Finally, a music application is presented to illustrate the practical application of deep learning in music quality evaluation. The shallow learning features and deep learning features are seamlessly combined into the SVM model for music quality modeling, based on which differential voting mechanisms are leveraged to realize the fusion of decision-making layers. Extensive experimental results have shown that the music quality recognition rate by this method can be significantly improved on our own compiled library and the Berlin database. Besides, it exhibits obvious advantages compared with the competitors.
APA, Harvard, Vancouver, ISO, and other styles
6

Fang, Lidong, Pei Ge, Lei Zhang, Weinan E. null, and Huan Lei. "DeePN$^2$: A Deep Learning-Based Non-Newtonian Hydrodynamic Model." Journal of Machine Learning 1, no. 1 (June 2022): 114–40. http://dx.doi.org/10.4208/jml.220115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan, Zhen, and Jinfeng Liu. "A Hybrid Deep Learning Model for Trash Classification Based on Deep Trasnsfer Learning." Journal of Electrical and Computer Engineering 2022 (June 23, 2022): 1–9. http://dx.doi.org/10.1155/2022/7608794.

Full text
Abstract:
Trash classification is an effective measure to protect the ecological environment and improve resource utilization. With the development of deep learning, it is possible to use the deep convolutional neural network for trash classification. In order to classify the trash of the TrashNet dataset, which consists of six classes of garbage images, this paper proposes a hybrid deep learning model based on deep transfer learning, which includes upper and lower streams. Firstly, the upper stream divides the input garbage image into category MPP (metal, paper, and plastic class) or category CGT (cardboard, glass, and trash class). Then, the lower stream predicts the exact class of trash according to the results of the upper stream. The proposed hybrid deep learning model achieves the best result with 98.5 % than that of the state-of-the-art approaches. Through the verification of CAM (class activation map), the proposed model can reasonably use the features of the image for classification, which explains the reason for the superior performance of this model.
APA, Harvard, Vancouver, ISO, and other styles
8

Ding, Shifei, Lili Guo, and Yanlu Hou. "Extreme learning machine with kernel model based on deep learning." Neural Computing and Applications 28, no. 8 (January 12, 2016): 1975–84. http://dx.doi.org/10.1007/s00521-015-2170-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dai, Xiaofeng, and Weidong Zhu. "Intelligent Financial Auditing Model Based on Deep Learning." Computational Intelligence and Neuroscience 2022 (August 28, 2022): 1–5. http://dx.doi.org/10.1155/2022/8282854.

Full text
Abstract:
The entire auditing process is complicated and tedious and requires a lot of human resources. Therefore, the intelligent development of auditing is the general trend. In order to improve the audit quality, this paper establishes an intelligent financial audit model that can predict the audit opinion of the consolidated financial statements. This paper proposes an audit opinion prediction model based on the fusion of deep belief neural network (DBN) and long-short term memory (LSTM). First, an indicator system is established for audit opinions, and multiple financial parameters are used to describe possible audit opinions. On this basis, a DBN network is designed to complete deep feature extraction and used for LSTM training. According to the prediction model obtained by training, the subsequent audit opinion can be scientifically predicted. In the experiment, the method in this paper is tested based on financial audit related data sets and compared with the prediction results of traditional multilayer perceptron (MLP), convolutional neural network (CNN), and LSTM models. The results verify the validity and reliability of the model in this paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Chongxin, Bo Chen, Youjun Bu, Surong Zhang, Desheng Zhang, and Bingbing Jiang. "Lightweight Traffic Classification Model Based on Deep Learning." Wireless Communications and Mobile Computing 2022 (October 10, 2022): 1–16. http://dx.doi.org/10.1155/2022/3539919.

Full text
Abstract:
The development of mobile computing and the Internet of Things (IoT) has led to a surge in traffic volume, which creates a heavy burden for efficient network management. The network management requires high computational overheads to make traffic classification, which is even worse when in edge networks; existing approaches sacrifice the efficiency to obtain high-precision classification results, which are no longer suitable for limited resources edge network scenario. Given the problem, existing traffic classification generally has huge parameters and especially computational complexity. We propose a lightweight traffic classification model based on the Mobilenetv3 and improve it for an ingenious balance between performance and lightweight. Firstly, we adjust the model scale, width, and resolution to substantially reduce the number of model parameters and computations. Secondly, we embed precise spatial information on the attention mechanism to enhance the traffic flow-level feature extraction capability. Thirdly, we use the lightweight multiscale feature fusion to obtain the multiscale flow-level features of traffic. Experiments show that our model has excellent classification accuracy and operational efficiency. The accuracy of the traffic classification model designed in our work has reached more than 99.82%, and the parameter and computation amount are significantly reduced to 0.26 M and 5.26 M. In addition, the simulation experiments on Raspberry Pi prove the proposed model can realize real-time classification capability in the edge network.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Model-Based Deep Learning"

1

Matsoukas, Christos. "Model Distillation for Deep-Learning-Based Gaze Estimation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261412.

Full text
Abstract:
With the recent advances in deep learning, the gaze estimation models reached new levels, in terms of predictive accuracy, that could not be achieved with older techniques. Nevertheless, deep learning consists of computationally and memory expensive algorithms that do not allow their integration for embedded systems. This work aims to tackle this problem by boosting the predictive power of small networks using a model compression method called "distillation". Under the concept of distillation, we introduce an additional term to the compressed model’s total loss which is a bounding term between the compressed model (the student) and a powerful one (the teacher). We show that the distillation method introduces to the compressed model something more than noise. That is, the teacher’s inductive bias which helps the student to reach a better optimum due to the adaptive error deduction. Furthermore, we show that the MobileNet family exhibits unstable training phases and we report that the distilled MobileNet25 slightly outperformed the MobileNet50. Moreover, we try newly proposed training schemes to increase the predictive power of small and thin networks and we infer that extremely thin architectures are hard to train. Finally, we propose a new training scheme based on the hintlearning method and we show that this technique helps the thin MobileNets to gain stability and predictive power.
Den senaste utvecklingen inom djupinlärning har hjälp till att förbättra precisionen hos gaze estimation-modeller till nivåer som inte tidigare varit möjliga. Dock kräver djupinlärningsmetoder oftast både stora mängder beräkningar och minne som därmed begränsar dess användning i inbyggda system med små minnes- och beräkningsresurser. Det här arbetet syftar till att kringgå detta problem genom att öka prediktiv kraft i små nätverk som kan användas i inbyggda system, med hjälp av en modellkomprimeringsmetod som kallas distillation". Under begreppet destillation introducerar vi ytterligare en term till den komprimerade modellens totala optimeringsfunktion som är en avgränsande term mellan en komprimerad modell och en kraftfull modell. Vi visar att destillationsmetoden inför mer än bara brus i den komprimerade modellen. Det vill säga lärarens induktiva bias som hjälper studenten att nå ett bättre optimum tack vare adaptive error deduction. Utöver detta visar vi att MobileNet-familjen uppvisar instabila träningsfaser och vi rapporterar att den destillerade MobileNet25 överträffade sin lärare MobileNet50 något. Dessutom undersöker vi nyligen föreslagna träningsmetoder för att förbättra prediktionen hos små och tunna nätverk och vi konstaterar att extremt tunna arkitekturer är svåra att träna. Slutligen föreslår vi en ny träningsmetod baserad på hint-learning och visar att denna teknik hjälper de tunna MobileNets att stabiliseras under träning och ökar dess prediktiva effektivitet.
APA, Harvard, Vancouver, ISO, and other styles
2

Lim, Steven. "Recommending TEE-based Functions Using a Deep Learning Model." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104999.

Full text
Abstract:
Trusted execution environments (TEEs) are an emerging technology that provides a protected hardware environment for processing and storing sensitive information. By using TEEs, developers can bolster the security of software systems. However, incorporating TEE into existing software systems can be a costly and labor-intensive endeavor. Software maintenance—changing software after its initial release—is known to contribute the majority of the cost in the software development lifecycle. The first step of making use of a TEE requires that developers accurately identify which pieces of code would benefit from being protected in a TEE. For large code bases, this identification process can be quite tedious and time-consuming. To help reduce the software maintenance costs associated with introducing a TEE into existing software, this thesis introduces ML-TEE, a recommendation tool that uses a deep learning model to classify whether an input function handles sensitive information or sensitive code. By applying ML-TEE, developers can reduce the burden of manual code inspection and analysis. ML-TEE's model was trained and tested on functions from GitHub repositories that use Intel SGX and on an imbalanced dataset. The accuracy of the final model used in the recommendation system has an accuracy of 98.86% and an F1 score of 80.00%. In addition, we conducted a pilot study, in which participants were asked to identify functions that needed to be placed inside a TEE in a third-party project. The study found that on average, participants who had access to the recommendation system's output had a 4% higher accuracy and completed the task 21% faster.
Master of Science
Improving the security of software systems has become critically important. A trusted execution environment (TEE) is an emerging technology that can help secure software that uses or stores confidential information. To make use of this technology, developers need to identify which pieces of code handle confidential information and should thus be placed in a TEE. However, this process is costly and laborious because it requires the developers to understand the code well enough to make the appropriate changes in order to incorporate a TEE. This process can become challenging for large software that contains millions of lines of code. To help reduce the cost incurred in the process of identifying which pieces of code should be placed within a TEE, this thesis presents ML-TEE, a recommendation system that uses a deep learning model to help reduce the number of lines of code a developer needs to inspect. Our results show that the recommendation system achieves high accuracy as well as a good balance between precision and recall. In addition, we conducted a pilot study and found that participants from the intervention group who used the output from the recommendation system managed to achieve a higher average accuracy and perform the assigned task faster than the participants in the control group.
APA, Harvard, Vancouver, ISO, and other styles
3

Hellström, Terese. "Deep-learning based prediction model for dose distributions in lung cancer patients." Thesis, Stockholms universitet, Fysikum, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-196891.

Full text
Abstract:
Background To combat one of the leading causes of death worldwide, lung cancer treatment techniques and modalities are advancing, and the treatment options are becoming increasingly individualized. Modern cancer treatment includes the option for the patient to be treated with proton therapy, which can in some cases spare healthy tissue from excessive dose better than conventional photon radiotherapy. However, to assess the benefit of proton therapy compared to photon therapy, it is necessary to make both treatment plans to get information about the Tumour Control Probability (TCP) and the Normal Tissue Complication Probability (NTCP). This requires excessive treatment planning time and increases the workload for planners.  Aim This project aims to investigate the possibility for automated prediction of the treatment dose distribution using a deep learning network for lung cancer patients treated with photon radiotherapy. This is an initial step towards decreasing the overall planning time and would allow for efficient estimation of the NTCP for each treatment plan and lower the workload of treatment planning technicians. The purpose of the current work was also to understand which features of the input data and training specifics were essential for producing accurate predictions.  Methods Three different deep learning networks were developed to assess the difference in performance based on the complexity of the input for the network. The deep learning models were applied for predictions of the dose distribution of lung cancer treatment and used data from 95 patient treatments. The networks were trained with a U-net architecture using input data from the planning Computed Tomography (CT) and volume contours to produce an output of the dose distribution of the same image size. The network performance was evaluated based on the error of the predicted mean dose to Organs At Risk (OAR) as well as the shape of the predicted Dose-Volume Histogram (DVH) and individual dose distributions.  Results  The optimal input combination was the CT scan and lung, mediastinum envelope and Planning Target Volume (PTV) contours. The model predictions showed a homogenous dose distribution over the PTV with a steep fall-off seen in the DVH. However, the dose distributions had a blurred appearance and the predictions of the doses to the OARs were therefore not as accurate as of the doses to the PTV compared to the manual treatment plans. The performance of the network trained with the Houndsfield Unit input of the CT scan had similar performance as the network trained without it.  Conclusions As one of the novel attempts to assess the potential for a deep learning-based prediction model for the dose distribution based on minimal input, this study shows promising results. To develop this kind of model further a larger data set would be needed and the training method could be expanded as a generative adversarial network or as a more developed U-net network.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Mengtong. "An intelligent flood evacuation model based on deep learning of various flood scenarios." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karlsson, Axel, and Bohan Zhou. "Model-Based versus Data-Driven Control Design for LEACH-based WSN." Thesis, KTH, Maskinkonstruktion (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272197.

Full text
Abstract:
In relation to the increasing interest in implementing smart cities, deployment of widespread wireless sensor networks (WSNs) has become a current hot topic. Among the application’s greatest challenges, there is still progress to be made concerning energy consumption and quality of service. Consequently, this project aims to explore a series of feasible solutions to improve the WSN energy efficiency for data aggregation by the WSN. This by strategically adjusting the position of the receiving base station and the packet rate of the WSN nodes. Additionally, the low-energy adaptive clustering hierarchy (LEACH) protocol is coupled with the WSN state of charge (SoC). For this thesis, a WSN was defined as a two dimensional area which contains sensor nodes and a mobile sink, i.e. a movable base station. Subsequent to the rigorous analyses of the WSN data clustering principles and system-wide dynamics, two different developing strategies, model-based and data-driven designs, were employed to develop two corresponding control approaches, model predictive control and reinforcement learning, on WSN energy management. To test their performance, a simulation environment was thus developed in Python, including the extended LEACH protocol. The amount of data transmitted by an energy unit is adopted as the index to estimate the control performance. The simulation results show that the model based controller was able to aggregate over 22% more bits than only using the LEACH protocol. Whilst the data driven controller had a worse performance than the LEACH network but showed potential for smaller sized WSNs containing a fewer amount of nodes. Nonetheless, the extension of the LEACH protocol did not give rise to obvious improvement on energy efficiency due to a wide range of differing results.
I samband med det ökande intresset för att implementera så kallade smart cities, har användningen av utbredda trådlösa sensor nätverk (WSN) blivit ett intresseområde. Bland applikationens största utmaningar, finns det fortfarande förbättringar med avseende på energiförbrukning och servicekvalité. Därmed så inriktar sig detta projekt på att utforska en mängd möjliga lösningar för att förbättra energieffektiviteten för dataaggregation inom WSN. Detta gjordes genom att strategiskt justera positionen av den mottagande basstationen samt paketfrekvensen för varje nod. Dessutom påbyggdes low-energy adaptive clustering hierarchy (LEACH) protokollet med WSN:ets laddningstillstånd. För detta examensarbete definierades ett WSN som ett två dimensionellt plan som innehåller sensor noder och en mobil basstation, d.v.s. en basstation som går att flytta. Efter rigorös analys av klustringsmetoder samt dynamiken av ett WSN, utvecklades två kontrollmetoder som bygger på olika kontrollstrategier. Dessa var en modelbaserad MPC kontroller och en datadriven reinforcement learning kontroller som implementerades för att förbättra energieffektiviteten i WSN. För att testa prestandan på dom två kontrollmetoderna, utvecklades en simulations platform baserat på Python, tillsamans med påbyggnaden av LEACH protokollet. Mängden data skickat per energienhet användes som index för att approximera kontrollprestandan. Simuleringsresultaten visar att den modellbaserade kontrollern kunde öka antalet skickade datapacket med 22% jämfört med när LEACH protokollet användes. Medans den datadrivna kontrollern hade en sämre prestanda jämfört med när enbart LEACH protokollet användes men den visade potential för WSN med en mindre storlek. Påbyggnaden av LEACH protokollet gav ingen tydlig ökning med avseende på energieffektiviteten p.g.a. en mängd avvikande resultat.
APA, Harvard, Vancouver, ISO, and other styles
6

Lai, Khai Ping. "A deep learning model for automatic image texture classification: Application to vision-based automatic aircraft landing." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/97992/4/Khai_Ping_Lai_Thesis.pdf.

Full text
Abstract:
This project aims to investigate a robust Deep Learning architecture to classify different type of textural imagery. The findings will eventually be part of a central processing algorithm used for Automatic Image Classification for Automatic Aircraft Landing.
APA, Harvard, Vancouver, ISO, and other styles
7

Keisala, Simon. "Using a Character-Based Language Model for Caption Generation." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.

Full text
Abstract:
Using AI to automatically describe images is a challenging task. The aim of this study has been to compare the use of character-based language models with one of the current state-of-the-art token-based language models, im2txt, to generate image captions, with focus on morphological correctness. Previous work has shown that character-based language models are able to outperform token-based language models in morphologically rich languages. Other studies show that simple multi-layered LSTM-blocks are able to learn to replicate the syntax of its training data. To study the usability of character-based language models an alternative model based on TensorFlow im2txt has been created. The model changes the token-generation architecture into handling character-sized tokens instead of word-sized tokens. The results suggest that a character-based language model could outperform the current token-based language models, although due to time and computing power constraints this study fails to draw a clear conclusion. A problem with one of the methods, subsampling, is discussed. When using the original method on character-sized tokens this method removes characters (including special characters) instead of full words. To solve this issue, a two-phase approach is suggested, where training data first is separated into word-sized tokens where subsampling is performed. The remaining tokens are then separated into character-sized tokens. Future work where the modified subsampling and fine-tuning of the hyperparameters are performed is suggested to gain a clearer conclusion of the performance of character-based language models.
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Xiren. "Deep Learning-Based Vehicle Recognition Schemes for Intelligent Transportation Systems." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42247.

Full text
Abstract:
With the increasing highlighted security concerns in Intelligent Transportation System (ITS), Vision-based Automated Vehicle Recognition (VAVR) has attracted considerable attention recently. A comprehensive VAVR system contains three components: Vehicle Detection (VD), Vehicle Make and Model Recognition (VMMR), and Vehicle Re-identification (VReID). These components perform coarse-to-fine recognition tasks in three steps. The VAVR system can be widely used in suspicious vehicle recognition, urban traffic monitoring, and automated driving system. Vehicle recognition is complicated due to the subtle visual differences between different vehicle models. Therefore, how to build a VAVR system that can fast and accurately recognize vehicle information has gained tremendous attention. In this work, by taking advantage of the emerging deep learning methods, which have powerful feature extraction and pattern learning abilities, we propose several models used for vehicle recognition. First, we propose a novel Recurrent Attention Unit (RAU) to expand the standard Convolutional Neural Network (CNN) architecture for VMMR. RAU learns to recognize the discriminative part of a vehicle on multiple scales and builds up a connection with the prominent information in a recurrent way. The proposed ResNet101-RAU achieves excellent recognition accuracy of 93.81% on the Stanford Cars dataset and 97.84% on the CompCars dataset. Second, to construct efficient vehicle recognition models, we simplify the structure of RAU and propose a Lightweight Recurrent Attention Unit (LRAU). The proposed LRAU extracts the discriminative part features by generating attention masks to locate the keypoints of a vehicle (e.g., logo, headlight). The attention mask is generated based on the feature maps received by the LRAU and the preceding attention state generated by the preceding LRAU. Then, by adding LRAUs to the standard CNN architectures, we construct three efficient VMMR models. Our models achieve the state-of-the-art results with 93.94% accuracy on the Stanford Cars dataset, 98.31% accuracy on the CompCars dataset, and 99.41% on the NTOU-MMR dataset. In addition, we construct a one-stage Vehicle Detection and Fine-grained Recognition (VDFG) model by combining our LRAU with the general object detection model. Results show the proposed VDFG model can achieve excellent performance with real-time processing speed. Third, to address the VReID task, we design the Compact Attention Unit (CAU). CAU has a compact structure, and it relies on a single attention map to extract the discriminative local features of a vehicle. We add two CAUs to the truncated ResNet to construct a small but efficient VReID model, ResNetT-CAU. Compared with the original ResNet, the model size of ResNetT-CAU is reduced by 60%. Extensive experiments on the VeRi and VehicleID dataset indicate the proposed ResNetT-CAU achieve the best re-identification results on both datasets. In summary, the experimental results on the challenging benchmark VMMR and VReID datasets indicate our models achieve the best VMMR and VReID performance, and our models have a small model size and fast image processing speed.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Rongrong. "Multispectral images-based background subtraction using Codebook and deep learning approaches." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA013.

Full text
Abstract:
Cette thèse vise à étudier les images multispectrales pour la détection d'objets en mouvement par soustraction d'arrière-plan, à la fois avec des méthodes classiques et d’apprentissage profond. En tant qu'algorithme classique efficace et représentatif pour la soustraction de fond, l’algorithme Codebook traditionnel a d'abord été étendu au cas multispectral. Afin de rendre l'algorithme fiable et robuste, un mécanisme auto-adaptatif pour sélectionner les paramètres optimaux a ensuite été proposé. Dans ce cadre, de nouveaux critères dans le processus d'appariement sont employés et de nouvelles techniques pour construire le modèle d'arrière-plan sont conçues, y compris le Codebook de boîtes, le Codebook dynamique et la stratégie de fusion. La dernière tentative est d'étudier les avantages potentiels de l'utilisation d'images multispectrales via des réseaux de neurones convolutifs. Sur la base de l'algorithme impressionnant FgSegNet_v2, les principales contributions de ce travail reposent sur deux aspects : (1) extraire trois canaux sur sept de l'ensemble des données multispectrales du FluxData FD-1665 pour correspondre au nombre de canaux d'entrée du modèle profond, et (2) proposer un nouvel encodeur convolutionnel pour pouvoir utiliser tous les canaux multispectraux disponibles permettant d’explorer davantage les informations des images multispectrales
This dissertation aims to investigate the multispectral images in moving objects detection via background subtraction, both with classical and deep learning-based methods. As an efficient and representative classical algorithm for background subtraction, the traditional Codebook has first been extended to multispectral case. In order to make the algorithm reliable and robust, a self-adaptive mechanism to select optimal parameters has then been proposed. In this frame, new criteria in the matching process are employed and new techniques to build the background model are designed, including box-based Codebook, dynamic Codebook and fusion strategy. The last attempt is to investigate the potential benefit of using multispectral images via convolutional neural networks. Based on the impressive algorithm FgSegNet_v2, the major contributions of this part lie in two aspects: (1) extracting three channels out of seven in the FluxData FD-1665 multispectral dataset to match the number of input channels of the deep model, and (2) proposing a new convolutional encoder to utilize all the multispectral channels available to further explore the information of multispectral images
APA, Harvard, Vancouver, ISO, and other styles
10

Rossi, Alex. "Self-supervised information retrieval: a novel approach based on Deep Metric Learning and Neural Language Models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Model-Based Deep Learning"

1

Lattery, Mark J. Deep Learning in Introductory Physics: Exploratory Studies of Model-Based Reasoning. Information Age Publishing, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klingler-Vidra, Robyn. The Venture Capital State. Cornell University Press, 2018. http://dx.doi.org/10.7591/cornell/9781501723377.001.0001.

Full text
Abstract:
The Venture Capital State investigates the diffusion of the globally acclaimed Silicon Valley venture capital (VC) policy model. The spread of this model has been ubiquitous, with at least 45 states across a range of countries, in terms of geography, culture, and size, attempting to build local VC markets. In contrast to the transcendent exuberance for VC, policymakers in each and every state have implemented a distinct set of policies. Even states of similar population and economic sizes that are geographically and culturally proximate, and at comparable levels of industrialization, have not implemented similar policies. This book explains why: policymakers are “contextually rational” in their learning; their context-rooted norms shape preferences, underpinning their distinct valuations of studied models. The normative context of those learning about the policy – how they see themselves and what they deem as locally appropriate – informs their design. Findings are based upon deep investigations of VC policymaking in an East Asian cluster of states: Hong Kong, Taiwan, and Singapore. These states’ VC successes reflects their ability to effectively adapt the highly-lauded model for their local context, not their policymakers’ approximation of the Silicon Valley policy model.
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, James A. Brain Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/acprof:oso/9780199357789.003.0012.

Full text
Abstract:
What form would a brain theory take? Would it be short and punchy, like Maxwell’s Equations? Or with a clear goal but achieved by a community of mechanisms—local theories—to attain that goal, like the US Tax Code. The best developed recent brain-like model is the “neural network.” In the late 1950s Rosenblatt’s Perceptron and many variants proposed a brain-inspired associative network. Problems with the first generation of neural networks—limited capacity, opaque learning, and inaccuracy—have been largely overcome. In 2016, a program from Google, AlphaGo, based on a neural net using deep learning, defeated the world’s best Go player. The climax of this chapter is a fictional example starring Sherlock Holmes demonstrating that complex associative computation in practice has less in common with accurate pattern recognition and more with abstract high-level conceptual inference.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Model-Based Deep Learning"

1

Sanghi, Nimish. "Model-Based Algorithms." In Deep Reinforcement Learning with Python, 49–76. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6809-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Mei-li, Qing-qing Wang, and Jiang-lin Luo. "Lip-Reading Based on Deep Learning Model." In Transactions on Edutainment XV, 32–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59351-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, Fangjian, Chunjie Cao, and Zhihui Liu. "Webshell Detection Model Based on Deep Learning." In Lecture Notes in Computer Science, 408–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24268-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Satar, Burak, and Ahmet Emir Dirik. "Deep Learning Based Vehicle Make-Model Classification." In Artificial Neural Networks and Machine Learning – ICANN 2018, 544–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Shengquan, Jinju Duan, and Jingjing Cui. "Double Helix Deep Learning Model Based on Learning Cell." In Blended Learning: Educational Innovation for Personalized Learning, 22–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21562-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Biswas, Mainak, and Jasjit S. Suri. "Deep-learning Based Autoencoder Model for Label Distribution Learning." In Communications in Computer and Information Science, 59–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10766-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jatain, Aman, Khushboo Tripathi, and Shalini Bhaskar Bajaj. "Deep Learning-Based Object Recognition and Detection Model." In Deep Learning in Visual Computing and Signal Processing, 123–43. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277224-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Daoqi, Junyao Zhang, Yuhang Zhou, Qing Liu, and Nan Yang. "Intelligent Trader Model Based on Deep Reinforcement Learning." In Web Information Systems and Applications, 15–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30952-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Song, Junpeng Jiang, Xiaofang Zhang, Jinjin Wu, and Gongzheng Lu. "GAN-Based Planning Model in Deep Reinforcement Learning." In Artificial Neural Networks and Machine Learning – ICANN 2020, 323–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61616-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Han. "Radar-Based Activity Recognition with Deep Learning Model." In Lecture Notes in Electrical Engineering, 340–48. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8052-6_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Model-Based Deep Learning"

1

Huang, Zhewei, Shuchang Zhou, and Wen Heng. "Learning to Paint With Model-Based Deep Reinforcement Learning." In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rajat, Priyanka Jaroli, Chaitanya Singla, Vivek Bhardwaj, and Srikanta K. Mohapatra. "Deep Learning Model based Novel Semantic Analysis." In 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2022. http://dx.doi.org/10.1109/icacite53722.2022.9823741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hailong Li, Zhendong Wu, and Jianwu Zhang. "Pedestrian detection based on deep learning model." In 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2016. http://dx.doi.org/10.1109/cisp-bmei.2016.7852818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shah, Yash, Parth Shah, Mansi Patel, Chinmay Khamkar, and Pratik Kanani. "Deep Learning model-based Multimedia forgery detection." In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2020. http://dx.doi.org/10.1109/i-smac49090.2020.9243530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Shunqiang. "Improved model search based on distillation framework." In 2nd International Conference on Computer Vision, Image and Deep Learning, edited by Fengjie Cen and Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Shunqiang. "Improved model search based on distillation framework." In 2nd International Conference on Computer Vision, Image and Deep Learning, edited by Fengjie Cen and Badrul Hisham bin Ahmad. SPIE, 2021. http://dx.doi.org/10.1117/12.2604789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jamshidi Avanaki, Nasim, Steven Schmidt, Thilo Michael, Saman Zadtootaghaj, and Sebastian Möller. "Deep-BVQM: A Deep-learning Bitstream-based Video Quality Model." In MM '22: The 30th ACM International Conference on Multimedia. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3503161.3548374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Calleja, Pablo, Raúl García-Castro, Guadalupe Aguado-de-Cea, and Asunción Gómez-Pérez. "Role-based model for Named Entity Recognition." In RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. Incoma Ltd. Shoumen, Bulgaria, 2017. http://dx.doi.org/10.26615/978-954-452-049-6_021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Almalki, Ali Jaber, and Pawel Wocjan. "Forecasting Method based upon GRU-based Deep Learning Model." In 2020 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2020. http://dx.doi.org/10.1109/csci51800.2020.00096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rong, Dazhong, Qinming He, and Jianhai Chen. "Poisoning Deep Learning Based Recommender Model in Federated Learning Scenarios." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/306.

Full text
Abstract:
Various attack methods against recommender systems have been proposed in the past years, and the security issues of recommender systems have drawn considerable attention. Traditional attacks attempt to make target items recommended to as many users as possible by poisoning the training data. Benifiting from the feature of protecting users' private data, federated recommendation can effectively defend such attacks. Therefore, quite a few works have devoted themselves to developing federated recommender systems. For proving current federated recommendation is still vulnerable, in this work we probe to design attack approaches targeting deep learning based recommender models in federated learning scenarios. Specifically, our attacks generate poisoned gradients for manipulated malicious users to upload based on two strategies (i.e., random approximation and hard user mining). Extensive experiments show that our well-designed attacks can effectively poison the target models, and the attack effectiveness sets the state-of-the-art.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Model-Based Deep Learning"

1

Fullan, Michael, and Joanne Quinn. How Do Disruptive Innovators Prepare Today's Students to Be Tomorrow's Workforce?: Deep Learning: Transforming Systems to Prepare Tomorrow’s Citizens. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0002959.

Full text
Abstract:
Disruptive innovators take advantage of unique opportunities. Prior to COVID-19 progress in Latin America and the Caribbean for integrating technology, learning, and system change has been exceedingly slow. In this paper we first offer a general framework for transforming education. The framework focuses on the provision of technology, innovative ideas in learning and well-being, and what we call systemness which are favorable change factors at the local, middle/regional, and policy levels. We then take up the matter of system reform in Latin America and the Caribbean noting problems and potential. Then, we turn to a specific model in system change that we have developed called New Pedagogies for Deep Learning, a model developed in partnerships with groups of schools in ten countries since 2014. The model consists of three main components: 6 Global Competences (character, citizenship, collaboration, communication, creativity, and critical thinking), 4 learning elements (pedagogy, learning partnerships, learning environments, leveraging digital), and three system conditions (school culture, district/regional culture, and system policy). We offer a case study of relative success based on Uruguay with whom we have been working since 2014. Finally, we identify steps and recommendations for next steps in Latin America for taking action on system reform in the next perioda time that we consider critical for taking advantage of the current pandemic disruption. The next few years will be crucial for either attaining positive breakthroughs or slipping backwards into a reinforced status quo.
APA, Harvard, Vancouver, ISO, and other styles
2

A Decision-Making Method for Connected Autonomous Driving Based on Reinforcement Learning. SAE International, December 2020. http://dx.doi.org/10.4271/2020-01-5154.

Full text
Abstract:
At present, with the development of Intelligent Vehicle Infrastructure Cooperative Systems (IVICS), the decision-making for automated vehicle based on connected environment conditions has attracted more attentions. Reliability, efficiency and generalization performance are the basic requirements for the vehicle decision-making system. Therefore, this paper proposed a decision-making method for connected autonomous driving based on Wasserstein Generative Adversarial Nets-Deep Deterministic Policy Gradient (WGAIL-DDPG) algorithm. In which, the key components for reinforcement learning (RL) model, reward function, is designed from the aspect of vehicle serviceability, such as safety, ride comfort and handling stability. To reduce the complexity of the proposed model, an imitation learning strategy is introduced to improve the RL training process. Meanwhile, the model training strategy based on cloud computing effectively solves the problem of insufficient computing resources of the vehicle-mounted system. Test results show that the proposed method can improve the efficiency for RL training process with reliable decision making performance and reveals excellent generalization capability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography