Journal articles on the topic 'Model-agnostic Explainability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Model-agnostic Explainability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Diprose, William K., Nicholas Buist, Ning Hua, Quentin Thurier, George Shand, and Reece Robinson. "Physician understanding, explainability, and trust in a hypothetical machine learning risk calculator." Journal of the American Medical Informatics Association 27, no. 4 (February 27, 2020): 592–600. http://dx.doi.org/10.1093/jamia/ocz229.
Full textZafar, Muhammad Rehman, and Naimul Khan. "Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability." Machine Learning and Knowledge Extraction 3, no. 3 (June 30, 2021): 525–41. http://dx.doi.org/10.3390/make3030027.
Full textTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example." Journal of Medicine and Palliative Care 4, no. 2 (March 27, 2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Full textUllah, Ihsan, Andre Rios, Vaibhav Gala, and Susan Mckeever. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation." Applied Sciences 12, no. 1 (December 23, 2021): 136. http://dx.doi.org/10.3390/app12010136.
Full textSrinivasu, Parvathaneni Naga, N. Sandhya, Rutvij H. Jhaveri, and Roshani Raut. "From Blackbox to Explainable AI in Healthcare: Existing Tools and Case Studies." Mobile Information Systems 2022 (June 13, 2022): 1–20. http://dx.doi.org/10.1155/2022/8167821.
Full textLv, Ge, Chen Jason Zhang, and Lei Chen. "HENCE-X: Toward Heterogeneity-Agnostic Multi-Level Explainability for Deep Graph Networks." Proceedings of the VLDB Endowment 16, no. 11 (July 2023): 2990–3003. http://dx.doi.org/10.14778/3611479.3611503.
Full textFauvel, Kevin, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification." Mathematics 9, no. 23 (December 5, 2021): 3137. http://dx.doi.org/10.3390/math9233137.
Full textHassan, Fayaz, Jianguo Yu, Zafi Sherhan Syed, Nadeem Ahmed, Mana Saleh Al Reshan, and Asadullah Shaikh. "Achieving model explainability for intrusion detection in VANETs with LIME." PeerJ Computer Science 9 (June 22, 2023): e1440. http://dx.doi.org/10.7717/peerj-cs.1440.
Full textVieira, Carla Piazzon Ramos, and Luciano Antonio Digiampietri. "A study about Explainable Articial Intelligence: using decision tree to explain SVM." Revista Brasileira de Computação Aplicada 12, no. 1 (January 8, 2020): 113–21. http://dx.doi.org/10.5335/rbca.v12i1.10247.
Full textNguyen, Hung Viet, and Haewon Byeon. "Prediction of Out-of-Hospital Cardiac Arrest Survival Outcomes Using a Hybrid Agnostic Explanation TabNet Model." Mathematics 11, no. 9 (April 25, 2023): 2030. http://dx.doi.org/10.3390/math11092030.
Full textSzepannaek, Gero, and Karsten Lübke. "How much do we see? On the explainability of partial dependence plots for credit risk scoring." Argumenta Oeconomica 2023, no. 2 (2023): 137–50. http://dx.doi.org/10.15611/aoe.2023.1.07.
Full textSovrano, Francesco, Salvatore Sapienza, Monica Palmirani, and Fabio Vitali. "Metrics, Explainability and the European AI Act Proposal." J 5, no. 1 (February 18, 2022): 126–38. http://dx.doi.org/10.3390/j5010010.
Full textKaplun, Dmitry, Alexander Krasichkov, Petr Chetyrbok, Nikolay Oleinikov, Anupam Garg, and Husanbir Singh Pannu. "Cancer Cell Profiling Using Image Moments and Neural Networks with Model Agnostic Explainability: A Case Study of Breast Cancer Histopathological (BreakHis) Database." Mathematics 9, no. 20 (October 17, 2021): 2616. http://dx.doi.org/10.3390/math9202616.
Full textIbrahim, Muhammad Amien, Samsul Arifin, I. Gusti Agung Anom Yudistira, Rinda Nariswari, Abdul Azis Abdillah, Nerru Pranuta Murnaka, and Puguh Wahyu Prasetyo. "An Explainable AI Model for Hate Speech Detection on Indonesian Twitter." CommIT (Communication and Information Technology) Journal 16, no. 2 (June 8, 2022): 175–82. http://dx.doi.org/10.21512/commit.v16i2.8343.
Full textManikis, Georgios C., Georgios S. Ioannidis, Loizos Siakallis, Katerina Nikiforaki, Michael Iv, Diana Vozlic, Katarina Surlan-Popovic, Max Wintermark, Sotirios Bisdas, and Kostas Marias. "Multicenter DSC–MRI-Based Radiomics Predict IDH Mutation in Gliomas." Cancers 13, no. 16 (August 5, 2021): 3965. http://dx.doi.org/10.3390/cancers13163965.
Full textOubelaid, Adel, Abdelhameed Ibrahim, and Ahmed M. Elshewey. "Bridging the Gap: An Explainable Methodology for Customer Churn Prediction in Supply Chain Management." Journal of Artificial Intelligence and Metaheuristics 4, no. 1 (2023): 16–23. http://dx.doi.org/10.54216/jaim.040102.
Full textSathyan, Anoop, Abraham Itzhak Weinberg, and Kelly Cohen. "Interpretable AI for bio-medical applications." Complex Engineering Systems 2, no. 4 (2022): 18. http://dx.doi.org/10.20517/ces.2022.41.
Full textAhmed, Md Sabbir, Md Tasin Tazwar, Haseen Khan, Swadhin Roy, Junaed Iqbal, Md Golam Rabiul Alam, Md Rafiul Hassan, and Mohammad Mehedi Hassan. "Yield Response of Different Rice Ecotypes to Meteorological, Agro-Chemical, and Soil Physiographic Factors for Interpretable Precision Agriculture Using Extreme Gradient Boosting and Support Vector Regression." Complexity 2022 (September 19, 2022): 1–20. http://dx.doi.org/10.1155/2022/5305353.
Full textBaşağaoğlu, Hakan, Debaditya Chakraborty, Cesar Do Lago, Lilianna Gutierrez, Mehmet Arif Şahinli, Marcio Giacomoni, Chad Furl, Ali Mirchi, Daniel Moriasi, and Sema Sevinç Şengör. "A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications." Water 14, no. 8 (April 11, 2022): 1230. http://dx.doi.org/10.3390/w14081230.
Full textMehta, Harshkumar, and Kalpdrum Passi. "Social Media Hate Speech Detection Using Explainable Artificial Intelligence (XAI)." Algorithms 15, no. 8 (August 17, 2022): 291. http://dx.doi.org/10.3390/a15080291.
Full textLu, Haohui, and Shahadat Uddin. "Explainable Stacking-Based Model for Predicting Hospital Readmission for Diabetic Patients." Information 13, no. 9 (September 15, 2022): 436. http://dx.doi.org/10.3390/info13090436.
Full textAbdullah, Talal A. A., Mohd Soperi Mohd Zahid, Waleed Ali, and Shahab Ul Hassan. "B-LIME: An Improvement of LIME for Interpretable Deep Learning Classification of Cardiac Arrhythmia from ECG Signals." Processes 11, no. 2 (February 16, 2023): 595. http://dx.doi.org/10.3390/pr11020595.
Full textMerone, Mario, Alessandro Graziosi, Valerio Lapadula, Lorenzo Petrosino, Onorato d’Angelis, and Luca Vollero. "A Practical Approach to the Analysis and Optimization of Neural Networks on Embedded Systems." Sensors 22, no. 20 (October 14, 2022): 7807. http://dx.doi.org/10.3390/s22207807.
Full textKim, Jaehun. "Increasing trust in complex machine learning systems." ACM SIGIR Forum 55, no. 1 (June 2021): 1–3. http://dx.doi.org/10.1145/3476415.3476435.
Full textDu, Yuhan, Anthony R. Rafferty, Fionnuala M. McAuliffe, John Mehegan, and Catherine Mooney. "Towards an explainable clinical decision support system for large-for-gestational-age births." PLOS ONE 18, no. 2 (February 21, 2023): e0281821. http://dx.doi.org/10.1371/journal.pone.0281821.
Full textAntoniadi, Anna Markella, Yuhan Du, Yasmine Guendouz, Lan Wei, Claudia Mazo, Brett A. Becker, and Catherine Mooney. "Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review." Applied Sciences 11, no. 11 (May 31, 2021): 5088. http://dx.doi.org/10.3390/app11115088.
Full textKim, Kipyo, Hyeonsik Yang, Jinyeong Yi, Hyung-Eun Son, Ji-Young Ryu, Yong Chul Kim, Jong Cheol Jeong, et al. "Real-Time Clinical Decision Support Based on Recurrent Neural Networks for In-Hospital Acute Kidney Injury: External Validation and Model Interpretation." Journal of Medical Internet Research 23, no. 4 (April 16, 2021): e24120. http://dx.doi.org/10.2196/24120.
Full textAbir, Wahidul Hasan, Md Fahim Uddin, Faria Rahman Khanam, Tahia Tazin, Mohammad Monirujjaman Khan, Mehedi Masud, and Sultan Aljahdali. "Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method." Computational Intelligence and Neuroscience 2022 (April 27, 2022): 1–14. http://dx.doi.org/10.1155/2022/5140148.
Full textWikle, Christopher K., Abhirup Datta, Bhava Vyasa Hari, Edward L. Boone, Indranil Sahoo, Indulekha Kavila, Stefano Castruccio, Susan J. Simmons, Wesley S. Burr, and Won Chang. "An illustration of model agnostic explainability methods applied to environmental data." Environmetrics, October 25, 2022. http://dx.doi.org/10.1002/env.2772.
Full textXu, Zhichao, Hansi Zeng, Juntao Tan, Zuohui Fu, Yongfeng Zhang, and Qingyao Ai. "A Reusable Model-agnostic Framework for Faithfully Explainable Recommendation and System Scrutability." ACM Transactions on Information Systems, June 18, 2023. http://dx.doi.org/10.1145/3605357.
Full textJoyce, Dan W., Andrey Kormilitzin, Katharine A. Smith, and Andrea Cipriani. "Explainable artificial intelligence for mental health through transparency and interpretability for understandability." npj Digital Medicine 6, no. 1 (January 18, 2023). http://dx.doi.org/10.1038/s41746-023-00751-9.
Full textNakashima, Heitor Hoffman, Daielly Mantovani, and Celso Machado Junior. "Users’ trust in black-box machine learning algorithms." Revista de Gestão, October 25, 2022. http://dx.doi.org/10.1108/rege-06-2022-0100.
Full textSzepannek, Gero, and Karsten Lübke. "Explaining Artificial Intelligence with Care." KI - Künstliche Intelligenz, May 16, 2022. http://dx.doi.org/10.1007/s13218-022-00764-8.
Full textSharma, Jeetesh, Murari Lal Mittal, Gunjan Soni, and Arvind Keprate. "Explainable Artificial Intelligence (XAI) Approaches in Predictive Maintenance: A Review." Recent Patents on Engineering 18 (April 17, 2023). http://dx.doi.org/10.2174/1872212118666230417084231.
Full textSzczepański, Mateusz, Marek Pawlicki, Rafał Kozik, and Michał Choraś. "New explainability method for BERT-based model in fake news detection." Scientific Reports 11, no. 1 (December 2021). http://dx.doi.org/10.1038/s41598-021-03100-6.
Full textÖZTOPRAK, Samet, and Zeynep ORMAN. "A New Model-Agnostic Method and Implementation for Explaining the Prediction on Finance Data." European Journal of Science and Technology, June 29, 2022. http://dx.doi.org/10.31590/ejosat.1079145.
Full textBachoc, François, Fabrice Gamboa, Max Halford, Jean-Michel Loubes, and Laurent Risser. "Explaining machine learning models using entropic variable projection." Information and Inference: A Journal of the IMA 12, no. 3 (April 27, 2023). http://dx.doi.org/10.1093/imaiai/iaad010.
Full textLoveleen, Gaur, Bhandari Mohan, Bhadwal Singh Shikhar, Jhanjhi Nz, Mohammad Shorfuzzaman, and Mehedi Masud. "Explanation-driven HCI Model to Examine the Mini-Mental State for Alzheimer’s Disease." ACM Transactions on Multimedia Computing, Communications, and Applications, April 2022. http://dx.doi.org/10.1145/3527174.
Full textVilone, Giulia, and Luca Longo. "A Quantitative Evaluation of Global, Rule-Based Explanations of Post-Hoc, Model Agnostic Methods." Frontiers in Artificial Intelligence 4 (November 3, 2021). http://dx.doi.org/10.3389/frai.2021.717899.
Full textAlabi, Rasheed Omobolaji, Mohammed Elmusrati, Ilmo Leivo, Alhadi Almangush, and Antti A. Mäkitie. "Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP." Scientific Reports 13, no. 1 (June 2, 2023). http://dx.doi.org/10.1038/s41598-023-35795-0.
Full textBogdanova, Anna, Akira Imakura, and Tetsuya Sakurai. "DC-SHAP Method for Consistent Explainability in Privacy-Preserving Distributed Machine Learning." Human-Centric Intelligent Systems, July 6, 2023. http://dx.doi.org/10.1007/s44230-023-00032-4.
Full textZini, Julia El, and Mariette Awad. "On the Explainability of Natural Language Processing Deep Models." ACM Computing Surveys, July 19, 2022. http://dx.doi.org/10.1145/3529755.
Full textEsam Noori, Worood, and A. S. Albahri. "Towards Trustworthy Myopia Detection: Integration Methodology of Deep Learning Approach, XAI Visualization, and User Interface System." Applied Data Science and Analysis, February 23, 2023, 1–15. http://dx.doi.org/10.58496/adsa/2023/001.
Full textFilho, Renato Miranda, Anísio M. Lacerda, and Gisele L. Pappa. "Explainable regression via prototypes." ACM Transactions on Evolutionary Learning and Optimization, December 15, 2022. http://dx.doi.org/10.1145/3576903.
Full textAhmed, Zia U., Kang Sun, Michael Shelly, and Lina Mu. "Explainable artificial intelligence (XAI) for exploring spatial variability of lung and bronchus cancer (LBC) mortality rates in the contiguous USA." Scientific Reports 11, no. 1 (December 2021). http://dx.doi.org/10.1038/s41598-021-03198-8.
Full textChen, Tao, Meng Song, Hongxun Hui, and Huan Long. "Battery Electrode Mass Loading Prognostics and Analysis for Lithium-Ion Battery–Based Energy Storage Systems." Frontiers in Energy Research 9 (October 5, 2021). http://dx.doi.org/10.3389/fenrg.2021.754317.
Full textChen, Tao, Meng Song, Hongxun Hui, and Huan Long. "Battery Electrode Mass Loading Prognostics and Analysis for Lithium-Ion Battery–Based Energy Storage Systems." Frontiers in Energy Research 9 (October 5, 2021). http://dx.doi.org/10.3389/fenrg.2021.754317.
Full textJaved, Abdul Rehman, Habib Ullah Khan, Mohammad Kamel Bader Alomari, Muhammad Usman Sarwar, Muhammad Asim, Ahmad S. Almadhor, and Muhammad Zahid Khan. "Toward explainable AI-empowered cognitive health assessment." Frontiers in Public Health 11 (March 9, 2023). http://dx.doi.org/10.3389/fpubh.2023.1024195.
Full textMustafa, Ahmad, Klaas Koster, and Ghassan AlRegib. "Explainable Machine Learning for Hydrocarbon Risk Assessment." GEOPHYSICS, July 13, 2023, 1–52. http://dx.doi.org/10.1190/geo2022-0594.1.
Full textYang, Darrion Bo-Yun, Alexander Smith, Emily J. Smith, Anant Naik, Mika Janbahan, Charee M. Thompson, Lav R. Varshney, and Wael Hassaneen. "The State of Machine Learning in Outcomes Prediction of Transsphenoidal Surgery: A Systematic Review." Journal of Neurological Surgery Part B: Skull Base, September 12, 2022. http://dx.doi.org/10.1055/a-1941-3618.
Full text