Academic literature on the topic 'Modal plasmonic cavities'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modal plasmonic cavities.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modal plasmonic cavities"
Li, Xi, Joseph Smalley, Zhitong Li, and Qing Gu. "Effective Modal Volume in Nanoscale Photonic and Plasmonic Near-Infrared Resonant Cavities." Applied Sciences 8, no. 9 (August 25, 2018): 1464. http://dx.doi.org/10.3390/app8091464.
Full textMelchior, Pascal, Deirdre Kilbane, Ernst Jan Vesseur, Albert Polman, and Martin Aeschlimann. "Photoelectron imaging of modal interference in plasmonic whispering gallery cavities." Optics Express 23, no. 25 (November 30, 2015): 31619. http://dx.doi.org/10.1364/oe.23.031619.
Full textDell’Ova, Florian, Yoann Brulé, Nicolas Gros, Justin Bizouard, Diana Shakirova, Aurélie Bertaux, Ouassila Narsis-Labbani, et al. "Compact implementation of an all-optical 1-bit full adder by coherent excitation of a single 3-µm2 plasmonic cavity." EPJ Web of Conferences 287 (2023): 04014. http://dx.doi.org/10.1051/epjconf/202328704014.
Full textBerkhout, Annemarie, and A. Femius Koenderink. "A simple transfer-matrix model for metasurface multilayer systems." Nanophotonics 9, no. 12 (July 4, 2020): 3985–4007. http://dx.doi.org/10.1515/nanoph-2020-0212.
Full textSain, Basudeb, Roy Kaner, Yaara Bondy, and Yehiam Prior. "Plasmonic flat surface Fabry-Perot interferometry." Nanophotonics 7, no. 3 (February 23, 2018): 635–41. http://dx.doi.org/10.1515/nanoph-2017-0082.
Full textSchmidt, Mikołaj K., Ruben Esteban, Felix Benz, Jeremy J. Baumberg, and Javier Aizpurua. "Linking classical and molecular optomechanics descriptions of SERS." Faraday Discussions 205 (2017): 31–65. http://dx.doi.org/10.1039/c7fd00145b.
Full textBahadori, Meisam, Ali Eshaghian, Hossein Hodaei, Mohsen Rezaei, and Khashayar Mehrany. "Analysis and Design of Optical Demultiplexer Based on Arrayed Plasmonic Slot Cavities: Transmission Line Model." IEEE Photonics Technology Letters 25, no. 8 (April 2013): 784–86. http://dx.doi.org/10.1109/lpt.2013.2250951.
Full textPalstra, Isabelle M., Hugo M. Doeleman, and A. Femius Koenderink. "Hybrid cavity-antenna systems for quantum optics outside the cryostat?" Nanophotonics 8, no. 9 (May 16, 2019): 1513–31. http://dx.doi.org/10.1515/nanoph-2019-0062.
Full textMedina, I., and A. Villaseñor. "A comparative analysis between Drude and Johnson & Christy for nanometric optical demultiplexer." Journal of Physics: Conference Series 2475, no. 1 (April 1, 2023): 012010. http://dx.doi.org/10.1088/1742-6596/2475/1/012010.
Full textWang, Bo-Yun, Zi-Hao Zhu, You-Kang Gao, Qing-Dong Zeng, Yang Liu, Jun Du, Tao Wang, and Hua-Qing Yu. "Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system." Acta Physica Sinica 71, no. 2 (2022): 024201. http://dx.doi.org/10.7498/aps.71.20211397.
Full textDissertations / Theses on the topic "Modal plasmonic cavities"
Dell'Ova, Florian. "Étude de la photoluminescence non linéaire dans des microcavités plasmoniques d’or." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK038.
Full textThis thesis work is devoted to the detailed study of nonlinear photoluminescence emitted by gold modal plasmonic microcavities. Even today, the origin of this secondary light emission is debated, and numerous research attempts to identify the physical mechanisms involved. Our results unambiguously demonstrate the predominant role of the thermal dynamics of the hot electrons bath, generated by the absorption of femtosecond laser pulses, in the nonlinear emission process. Furthermore, our work shows that this secondary emission of light is intrinsically linked to the rich plasmonic landscape offered by this type of structures. We therefore propose several methods based on electrical and optical controls to redistribute the generation of nonlinear photoluminescence within the plasmonic cavity. Finally, these results allowed us to develop an all-optical reconfigurable logic gate capable of performing simple arithmetic and logic operations
Kumar, Upkar. "Plasmon logic gates designed by modal engineering of 2-dimensional crystalline metal cavities." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30170/document.
Full textThe main objective of this PhD work is to design, fabricate and characterize plasmonic devices based on highly crystalline metallic cavities for the two-dimensional information transfer and logic gate operations. First, we thoroughly characterize the optical response of ultra-thin gold colloidal cavities of sub-micronic size (400 to 900 nm) by dark- field spectroscopy (Fig. 1a). The dispersion of the high order plasmonic resonances of the cavities is measured and compared with a good agreement to simulations obtained with a numerical based on the Green Dyadic Method (GDM). We further extend our experiments to systematically tune the spectral responses of these colloidal nanoprisms in vicinity of metallic thin film substrates. A comprehensive study of these sub-micronic size cavity in bowtie antenna configuration is performed. We show a polarization-dependent field enhancement and a nanoscale field confinement at specific locations in these bowtie antennas. We systematically study the effects that could potentially affect the plasmonic resonances by non-linear photon luminescence microscopy, which has proved to be an efficient tool to observe the surface plasmon local density of states (SPLDOS). Inparticular, we show that an effective spatially and spectrally tuning of the high order plasmonic resonances can be achieved by the modification of the substrate (dielectric or metallic), by the controlled insertion of a defect inside a cavity or by the weak electromagnetic coupling between two adjacent cavities. The rational tailoring of the spatial distribution of the 2D confined resonances was applied to the design of devices with tunable plasmon transmittance between two connected cavities. The specific geometries are produced by focused ion milling crystalline gold platelets. The devices are characterized by non-linear luminescence mapping in confocal and leakage radiation microscopy techniques. The latter offers a unique way to observe propagating SPP signal over a 2D plasmonic cavity. We demonstrate the polarization-dependent mode-mediated transmittance for devices withadequate symmetry. The results are faithfully reproduced with our simulation tool based on Green dyadic method. Finally, we extend our approach to the design and fabrication of a reconfigurable logic gate device with multiple inputs and outputs. We demonstrate that 10 out of the possible 12 2-input 1-output logic gates can be implemented on the same structure by choosing the two input and the one output points. We also demonstrate reconfiguration of the device by changing polarization of the incident beam, set of input locations and threshold of the non-linear luminescence readout signal
Conference papers on the topic "Modal plasmonic cavities"
Ginzburg, P., E. Feigenbaum, and M. Orenstein. "2D photonic band gap cavities embedded in a plasmonic gap structure- zero modal volume?" In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1548043.
Full text