Academic literature on the topic 'Mn TWIP'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mn TWIP.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mn TWIP"

1

Razavi, Gholam Reza. "The Study of Type Twin Annealing in High Mn Steel." Applied Mechanics and Materials 148-149 (December 2011): 1085–88. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1085.

Full text
Abstract:
TWIP steels are high manganese steel (Mn: 17% - 35%) which are used for shaping car bodies. The structure of this kind of steels remains austenite even in room temperature. Due to low SFE (Stacking Fault Energy) twinning of grains is governing reformation mechanism in this kind of steels which strengthen TWIP steel. Regarding heat treatment influences on mechanical properties of TWIP steels, in this paper we discuss twinning phenomenon resulting from this kind of treatment. For this, following casting and hot rolling processes, we anneal the steel at 1100°C and different time cycles and study its microstructure using light microscope. The results showed that with decreasing grain size the number of twin annealing added And four types of annealing twin in the microstructure, in the end they all become one twin and then turn into grain.
APA, Harvard, Vancouver, ISO, and other styles
2

Moon, K. M., D. A. Kim, Y. H. Kim, and M. H. Lee. "Effect of Mn content on corrosion characteristics of lean Mn TWIP steel." International Journal of Modern Physics B 32, no. 19 (July 18, 2018): 1840083. http://dx.doi.org/10.1142/s0217979218400830.

Full text
Abstract:
It is important that the steel plate is manufactured with a high tensile strength to reduce the weight of the body. It is generally accepted that twinning induced plasticity (TWIP) steel is a special steel with not only a high ductility but also a high-tensile strength compared to general steel. While numerous investigations have been carried out on the TWIP steel with an amount of manganese of at least 20%, the investigation of steel with manganese content of less than 20% has seldom been considered until now. In this study, the TWIP steel with manganese of less than 20% (12Mn, 15Mn and 18Mn TWIP steel) was investigated to determine the corrosion properties using electrochemical method. The 18Mn and 12Mn samples exhibited the best and worst corrosion resistance, respectively. It is suggested that the 18Mn sample forms a stable oxide film on the surface because it contains a larger amount of manganese and aluminum compared to the other samples, and their composition enables the easy formation of the oxide film.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Li Hui, Di Tang, Hai Tao Jiang, Ji Bin Liu, and Yu Chen. "Effects of Different Manganese Content on Microstructures and Properties of TWIP Steel." Advanced Materials Research 399-401 (November 2011): 254–58. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.254.

Full text
Abstract:
By analysis of TWIP Steels with different manganese content, the results showed that the microstructures and properties had been changed with different Mn content. The elongation of the tested steel with 22.5% Mn was high for 55.5 % and n value of that reached to 0.360. When Mn content of the tested steel was 17.9%, the yield and tensile strength were higher and its elongation was lower for the tested steel than that of the tested steel with 22.5% Mn. The microstructures of the tested steel with high Mn content were austenite before and after being stretched at room temperature. Mn content was decreased and the microstructure of the tested steel after being stretched had a small amount of martensite transformation at room temperature. That is to say, double effect with TWIP and TRIP had occurred, but TWIP effect was dominant. TWIP effect increased plasticity and strain hardening capacity to improve formability. TRIP effect was mainly to improve strength so as to further attain the strength of the tested steel.
APA, Harvard, Vancouver, ISO, and other styles
4

UEJI, Rintaro. "Alloyed Steel(TWIP Steel, High Mn Steel)." Journal of the Japan Society for Technology of Plasticity 53, no. 620 (2012): 814–17. http://dx.doi.org/10.9773/sosei.53.814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olugbade, Temitope Olumide. "Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects." Corrosion Reviews 38, no. 6 (November 18, 2020): 473–88. http://dx.doi.org/10.1515/corrrev-2020-0052.

Full text
Abstract:
AbstractTwinning-induced plasticity (TWIP) steels are increasingly receiving wide attention for automotive applications due to their outstanding combination of ductility and strength, which can largely be attributed to the strain hardening effect, formation of mechanical twins during straining, and the presence of manganese (Mn) as an alloying element. However, the premature cracking and sudden failure frequently experienced by the TWIP steels under the combined action of tensile stress and corrosion environment remain a challenge for many material scientists and experts up till now. Driven by this challenge, an overview of the stress corrosion cracking (SCC) susceptibility of high-Mn TWIP steels (under the action of both mechanical loading and corrosion reaction) is presented. The SCC susceptibility of the high-Mn TWIP steels is specifically sensitive to hydrogen embrittlement, which is a major factor influencing the SCC behavior, and is a function of the hydrogen content, lattice-defect density and strength level. Besides, the corrosion susceptibility to hydrogen embrittlement may be reduced by suppressing the martensite in the TWIP steels by carbon additions. This review further discusses in detail the precipitation strengthening mechanisms as well as the corrosion behavior of TWIP steel by mechanism.
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Ulises, Jacob Ress, Juan Bosch, and David M. Bastidas. "Effect of Thermo-Mechanical Processing on the Corrosion Behavior of Fe−30Mn−5Al−0.5C TWIP Steel." Applied Sciences 10, no. 24 (December 19, 2020): 9104. http://dx.doi.org/10.3390/app10249104.

Full text
Abstract:
Electrochemical corrosion of thermo-mechanically processed (TMP) and recrystallized Fe−30Mn−5Al−0.5C twinning-induced plasticity (TWIP) steels containing 30 wt.% Mn was studied in a 1.0 wt.% NaCl electrolyte solution. The alkaline nature of the corrosion products containing manganese oxide (MnO) increases the dissolution kinetics of the TWIP steel in acid media, obtaining Mn2+ cations in solution, and producing the hydrogen evolution reaction (HER). X-ray photoelectron spectroscopy (XPS) surface analysis revealed an increased Al2O3 content of 91% in the passive layer of the recrystallized TWIP steel specimen, while in contrast only a 43% Al2O3 was found on the TMP specimen. Additionally, the chemical composition of the surface oxide layer as well as the TWIP alloy microstructure was analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). The results indicate an enhanced corrosion attack for the TMP high-Mn TWIP steel.
APA, Harvard, Vancouver, ISO, and other styles
7

Bastidas, David M., Jacob Ress, Juan Bosch, and Ulises Martin. "Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review." Metals 11, no. 2 (February 7, 2021): 287. http://dx.doi.org/10.3390/met11020287.

Full text
Abstract:
Twinning-induced plasticity (TWIP) steels have higher strength and ductility than conventional steels. Deformation mechanisms producing twins that prevent gliding and stacking of dislocations cause a higher ductility than that of steel grades with the same strength. TWIP steels are considered to be within the new generation of advanced high-strength steels (AHSS). However, some aspects, such as the corrosion resistance and performance in service of TWIP steel materials, need more research. Application of TWIP steels in the automotive industry requires a proper investigation of corrosion behavior and corrosion mechanisms, which would indicate the optimum degree of protection and the possible decrease in costs. In general, Fe−Mn-based TWIP steel alloys can passivate in oxidizing acid, neutral, and basic solutions, however they cannot passivate in reducing acid or active chloride solutions. TWIP steels have become as a potential material of interest for automotive applications due to their effectiveness, impact resistance, and negligible harm to the environment. The mechanical and corrosion performance of TWIP steels is subjected to the manufacturing and processing steps, like forging and casting, elemental composition, and thermo-mechanical treatment. Corrosion of TWIP steels caused by both intrinsic and extrinsic factors has posed a serious problem for their use. Passivity breakdown caused by pitting, and galvanic corrosion due to phase segregation are widely described and their critical mechanisms examined. Numerous studies have been performed to study corrosion behavior and passivation of TWIP steel. Despite the large number of articles on corrosion, few comprehensive reports have been published on this topic. The current trend for development of corrosion resistance TWIP steel is thoroughly studied and represented, showing the key mechanisms and factors influencing corrosion processes, and its consequences on TWIP steel. In addition, suggestions for future works and gaps in the literature are considered.
APA, Harvard, Vancouver, ISO, and other styles
8

Jung, Jong-Ku, Oh-Yeon Lee, Young-Koo Park, Dong-Eun Kim, and Kwang-Geun Jin. "Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels." Korean Journal of Materials Research 18, no. 7 (July 27, 2008): 394–99. http://dx.doi.org/10.3740/mrsk.2008.18.7.394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hernández-Belmontes, Humberto, Ignacio Mejía, and Cuauhtémoc Maldonado. "Ab Initio Study of Weldability of a High-Manganese Austenitic Twinning-Induced Plasticity (TWIP) Steel Microalloyed with Boron." MRS Proceedings 1812 (2016): 35–40. http://dx.doi.org/10.1557/opl.2016.15.

Full text
Abstract:
ABSTRACTHigh-Mn Twinning-Induced Plasticity (TWIP) steels are advanced high-strength steels (AHSS) currently under development; they are fully austenitic and characterized by twinning as the predominant strengthening mechanism. TWIP steels have high strength and formability with an elongation up to 80%, which allows reduction in automotive components weight and fuel consumption. Since the targeted application field of TWIP steels is the automotive industry, steels need high mechanical performance with good weldability and excellent corrosion resistance. However, there is lack of information about the weldability behavior of these advanced steels. This research work aims to study the weldability of a new generation of high-Mn austenitic TWIP steels microalloyed with B. Weldability was examined using spot welds produced by Gas Tungsten Arc Welding. Microstructural changes were examined using light optical metallography. Segregation of elements in the weld joint was evaluated using point and elemental mapping chemical analysis by Scanning Electron Microscopy and Electron-Dispersive Spectroscopy; while the hardness properties were examined with Vickers microhardness testing (HV25). Experimental results show that the welded joint microstructure consists of austenitic dendritic grains in the fusion zone, and equiaxed grains in the heat affected zone. Notably, the boron microalloyed TWIP steel exhibited poor weldability, showing hot cracking. Additionally, the studied TWIP steels showed a high degree of segregation in the fusion zone; Mn and Si segregated into the interdendritic regions, while Al and C preferentially segregated in dendritic areas. Finally, the welded joints of the TWIP steels showed microhardness values lower than the base material. In general, the present TWIP steels have problems of weldability, which are corroborated with microstructural changes, elements segregation and microhardness loss.
APA, Harvard, Vancouver, ISO, and other styles
10

Tewary, NK, SK Ghosh, and S. Chatterjee. "Deformation behaviour of low carbon high Mn twinning-induced plasticity steel." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 3 (October 16, 2017): 763–71. http://dx.doi.org/10.1177/0954406217730440.

Full text
Abstract:
The present study deals with the deformation behaviour of low carbon and high manganese twinning-induced plasticity (TWIP) steel (Fe–21Mn–3Si–3Al–0.06C, wt%) through microstructural investigation. Low carbon with high manganese along with the addition of aluminium in TWIP steel results in lowering of specific weight with higher strain hardening due to the formation of mechanical twins during deformation. The full austenite phase is obtained after solution treatment and deformation twins appear and austenite grains become flattened during application of 10% to 50% cold deformation. The annealing twins are relatively coarser compared to the newly formed deformation twins. With the increasing amount of cold deformation, deformation twins and dislocation density are increased. Deformation twinning can be considered to be the dominant deformation mechanism during the course of cold rolling applied in the present study. The cold deformation results in the evolution of dislocation substructure, stacking faults, deformation twins and twin–dislocation interaction, which may be correlated with the lower stacking fault energy (∼24 mJ/m2) of the investigated steel. Excellent combination of strength and ductility has been obtained in the present TWIP steel with a small rolling reduction of 10% and 30%. With the increasing amount of cold deformation, tensile strength notably increases and maximum tensile strength is obtained at 50% cold-deformed sample along with the diminutive sacrifice of the ductility.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mn TWIP"

1

Kangouei, Navid. "Study of Equilibrium State in Fe-Mn-Al-C Alloys." Thesis, KTH, Termodynamisk modellering, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148223.

Full text
Abstract:
We are living in a world of steel. Although there are a lot of other material in use, our most used material is steel. From building industry to transportation and even mother industries like mining, we use steel in different grades and amounts. There is always need for different grades of steel, and there is always interest in better properties and lower costs. Fe-Mn-Al-C steel group is one of the grades of steel is from the TWIP family. Beside its interesting mechanical properties, its corrosion resistance and cryogenic properties makes it very desirable to substitute more expensive current classes of the steel used in the industry. The automobile industry is also looking forward to implement this family of the steel in their products. This group of steel based on their chemical content can created a carbide ordered phase called κ which is one of the reasons of its interesting mechanical properties beside the TWIP properties. While κ may give more hardness due to precipitation hardening, it will make the steel brittle. Thus we need an understanding of the phase diagram of this group of the steels in order to choose our material and process accordingly. Phase diagrams are material engineers’ road maps for the processes and material choice as the initial steps, since we can predict the processes results and stable phases based on the equilibrium state from the diagrams. As the number of components gets more than three the phase diagram calculations and determination gets harder. For the ternary alloying systems we can only show sections of the phase diagrams as isothermal sections, or consider an element constant and depict the diagram as a “binary” system for the other two alloying elements at the other element concentration. In this work, we tried to experiment on the experimental data for equilibrium phases of Fe-Mn-Al-C alloying system based on the Equilibrated Alloys for alloys containing 20, 30 and 40 weight percent Manganese. The results were compared to the current database of the Thermo-Calc software for this family and we found some inconsistencies between the experimental data and the calculations which shows that the calculated results for this alloying system with its high Mn-content, is not reliable and that the thermodynamic descriptions must be adjusted.
PrecHiMn (RFSR-CT-2010-00018)
APA, Harvard, Vancouver, ISO, and other styles
2

Hamada, A. S. (Atef Saad). "Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels." Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514285844.

Full text
Abstract:
Abstract Austenitic high-Mn (15–30 wt.%) based twinning-induced plasticity (TWIP) steels provide great potential in applications for structural components in the automotive industry, owing to their excellent tensile strength-ductility property combination. In certain cases, these steels might also substitute austenitic Cr-Ni stainless steels. The aim of this present work is to investigate the high-temperature flow resistance, recrystallisation and the evolution of microstructure of high-Mn steels by compression testing on a Gleeble simulator. The influence of Al alloying (0–8 wt.%) in the hot rolling temperature range (800°C–1100°C) is studied in particular, but also some observations are made regarding the influence of Cr alloying. Microstructures are examined in optical and electron microscopes. The results are compared with corresponding properties of carbon and austenitic stainless steels. In addition, the mechanical properties are studied briefly, using tension tests over the temperature range from -80°C to 200°C. Finally, a preliminary study is conducted on the corrosion behaviour of TWIP steels in two media, using the potentiodynamic polarization technique. The results show that the flow stress level of high-Mn TWIP steels is considerably higher than that of low-carbon steels and depends on the Al concentration up to 6 wt.%, while the structure is fully austenitic at hot rolling temperatures. At higher Al contents, the flow stress level is reduced, due to the presence of ferrite. The static recrystallisation kinetics is slower compared to that of carbon steels, but it is faster than is typical of Nb-microalloyed or austenitic stainless steels. The high Mn content is one reason for high flow stress as well as for slow softening. Al plays a minor role only; but in the case of austenitic-ferritic structure, the softening of the ferrite phase occurs very rapidly, contributing to overall faster softening. The high Mn content also retards considerably the onset of dynamic recrystallisation, but the influence of Al is minor. Similarly, the contribution of Cr to the hot deformation resistance and static and dynamic recrystallisation, is insignificant. The grain size effectively becomes refined by the dynamic and static recrystallisation processes. The tensile testing of TWIP steels revealed that the Al alloying and temperature have drastic effects on the yield strength, tensile strength and elongation. The higher Al raises the yield strength because of the solid solution strengthening. However, Al tends to increase the stacking fault energy that affects strongly the deformation mechanism. In small concentrations, Al suppresses martensite formation and enhances deformation twinning, leading to high tensile strength and good ductility. However, with an increasing temperature, SFE increases, and consequently, the density of deformation twins decreases and mechanical properties are impaired. Corrosion testing indicated that Al alloying improves the corrosion resistance of high-Mn TWIP steels. The addition of Cr is a further benefit for the passivation of these steels. The passive film that formed on 8wt.% Al-6wt.%Cr steel was found to be even more stable than that on Type 304 steel in 5–50% HNO3 solutions. A prolonged pre-treatment of the steel in the anodic passive regime created a thick, protective and stable passive film that enhanced the corrosion resistance also in 3.5% NaCl solution.
APA, Harvard, Vancouver, ISO, and other styles
3

Shiekhelsouk, Mohamad Najeeb. "Modélisation polycristalline et étude expérimentale du comportement mécanique d'aciers Fe-Mn à l'effet TWIP : prise en compte du traitement thermique d'élaboration sur le maclage et les contraintes internes." Thesis, Metz, 2007. http://www.theses.fr/2007METZ038S/document.

Full text
Abstract:
Les aciers à effet TWIP (TWinning Induced Plasticity) suscitent un regain d'intérêt au niveau de la sidérurgie mondiale car ils combinent simultanément très haute résistance mécanique et très grande ductilité. Ces excellentes propriétés mécaniques sont liées à la présence de maclage mécanique, mécanisme connu sous le nom d'effet TWIP. L'objectif majeur de cette thèse est d'étudier l'effet TWIP sur plusieurs nuances d'aciers Fe-Mn (entièrement austénitiques, austéno-ferritiques duplex) afin de développer une loi de comportement prédictive des aciers à effet TWIP. La première partie de cette thèse fut donc consacrée à la détermination du comportement des aciers austénitiques Fe-Mn-C à effet TWIP. Pour ce faire, un modèle micromécanique par transition d'échelle en élastoviscoplasticité a été développé en se basant sur une description physique des mécanismes de déformation considérés dans cette étude: glissement cristallographique et maclage mécanique. Les interactions macle-glissement et macle-macle en relation avec le comportement de l'écrouissage à l'échelle du polycristal et à l'échelle du grain ont été finement analysé. La seconde partie de ce travail a été consacrée à la caractérisation du comportement d'aciers duplex Fe-Mn-Al-C par la Diffraction des Rayons X afin d'évaluer les contraintes internes initiales dans les deux phases ainsi que leur évolution avec la déformation au cours d'un essai mécaniques in situ. Une modélisation du comportement d'aciers duplex a été établie dans le but de développer un outil d'optimisation de la microstructure (proportion de la phase ferritique/austénitique) dans une approche "Alloy design". Puis, des essais de traitement thermique ont été faits afin de favoriser le maclage dans les aciers duplex
Steels having TWIP effect (TWinning Induced Plasticity) are very interesting for the worldwide siderurgy, because they simultaneously combine very high mechanical strength and ductility. These excellent mechanical properties are related to the presence of mechanical twinning, the so-called TWIP effect. The major objective of this thesis is to study the TWIP effect on several grades of Fe-Mn steels (entirely austenitic, austeno-ferritic duplex) in order to develop a predictive behavior law of steels with TWIP effect. The first part of this work consisted of the modelling of the behavior of Fe-Mn-C austenitic steels having TWIP effect. A micromechanical model using the scale transition method in elastoviscoplasticity has been developed. It is based on a physical description of the deformation mechanisms considered in this study: crystallographic slip and mechanical twinning. The twin-slip and twin-twin interactions in relation with the hardening behaviour at the polycrystal scale and the grain scale have been finely analyzed.The second part of this work is concentrated on the characterization of the behavior of Fe-Mn-Al-C duplex steels by X-rays diffraction in order to evaluate the initial internal stresses in the two phases as well as their evolution with the deformation during an in situ tensile test. A modeling of the duplex steel behavior was established in order to develop an optimization tool of the microstructure (proportion of the ferritic/austenitic phase) in an approach "Alloy design". Then, tests of heat treatment were made in order to generate the TWIP effect in the duplex steels
APA, Harvard, Vancouver, ISO, and other styles
4

Shiekhelsouk, Mohamad Najeeb Cherkaoui Mohammed. "Modélisation polycristalline et étude expérimentale du comportement mécanique d'aciers Fe-Mn à l'effet TWIP. Prise en compte du traitement thermique d'élaboration sur le maclage et les contraintes internes." [S.l.] : [s.n.], 2007. ftp://ftp.scd.univ-metz.fr/pub/Theses/2007/Shielkhezsouk._Najeeb.SMZ0738.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chulist, Robert. "Structure and Properties of Twin Boundaries in Ni-Mn-Ga Alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70998.

Full text
Abstract:
Ni-Mn-Ga alloys close to the stoichiometric composition Ni2MnGa belong to the quite new family of ferromagnetic shape memory alloys. These alloys are characterized by the magnetic field induced strain (MFIS) based on the comparably easy motion of twin boundaries under a magnetic field. They are mostly chosen as a potential candidate for practical application especially promising for actuators and sensors because they are showing the largest MFIS so far. Depending on the chemical composition and heat treatment, at least three martensitic structures can be distinguished in the Ni-Mn-Ga system. However, the effect mentioned above only exists in two modulated structures. Since for the intended application of MFIS in technology polycrystalline materials seem to be more appropriate in contrast to single crystals, the specific polycrystalline aspects are considered. Factors important for decreasing the twinning stress and increasing the twinning strain of polycrystalline Ni-Mn-Ga alloys are texturing, adjusting the structure by annealing and training by thermomechanical treatments. To achieve pronounced MFIS in polycrystals, fabrication processes are needed to produce specific strong textures. The material texturing has been obtained by directional solidification and plastic deformation by hot rolling and hot extrusion as well as high pressure torsion (HPT). To examine the texture of coarse-grained Ni-Mn-Ga alloys (due to a solidification process or dynamic recrystallization), diffraction of synchrotron radiation and neutrons was applied. The texture results show that the texture of Ni-Mn-Ga subjected to directional solidification, hot rolling and hot extrusion is a fibre or weak biaxial texture. However, local synchrotron measurements reveal that the global fibre texture of the hot extruded sample is a ”cyclic” fibre texture, i.e. it is composed of components related to the radial direction rotating around the extrusion axis. This allows finding regions with a strong texture component. The texture after HPT is characterized by a strong cube with the cube favourably oriented. The initial microstructure of the Ni-Mn-Ga alloys is a typical self-accommodated microstructure of martensite. High resolution EBSD mappings show macro, micro twins and two types of microstructure. The twin plane is determined to be {110). In a typical martensitic transformation the high-temperature phase has a higher crystallographic symmetry than the low-temperature phase. Consequently, austenite may transform to several martensitic variants, the number of which depends on the change of symmetry during transformation. Generally, in a cubic-to-tetragonal transformation (5M case) three variants can form with the c-axis oriented close to the three main cubic axes of austenite. However, close examination of the high resolution EBSD mapping reveals that more than just three orientations, as expected from the Bain model, exist in Ni50Mn29Ga21. Each of three Bain variants may be split in some twin relations in different regions of the sample which differ from each other by about few degrees creating a much higher number of variants. The training process, as the last step in the preparation procedure of Ni-Mn-Ga alloys, consists of multi-axis compression finally leading to a single-variant state. Compression of polycrystalline samples leads to motion of those twin boundaries changing the volume fraction of particular martensitic variants in such a way that the shortest axis (c-axis) becomes preferentially aligned parallel to the compression axis. It allows reducing the twinning stress and maximizing the twinning strain. To understand the training process in more detail, the interaction of the twin variants with the neighbourhood of parent austenite grains was investigated.
APA, Harvard, Vancouver, ISO, and other styles
6

Marioni, Miguel Augusto 1971. "Pulsed magnetic field-induced twin boundary motion on Ni-Mn-Ga." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/7965.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2003.
Includes bibliographical references (p. 201-210).
The magnetic field-induced strain (ferromagnetic shape memory effect - FSME) in Ni-Mn-Ga was first reported in 1996 by Ullakko et al. Since then, up to 6% FSME in single-crystal tetragonal-Ni-Mn-Ga samples has been observed in static fields, and up to 3% at 500 Hz. The present work demonstrates 6% FSME of a Ni-Mn-Ga single crystal of 5 x 5 x 9.85 mm³ in 200[mu]s is by application of a magnetic field pulse. It proves the feasibility of actuators operating at frequencies above of 1 kHz at room temperature for this geometry, and that the actuation can be accomplished using compact, air-core Helmholtz coils operated in pulsed mode. The eddy-current attenuation of 620 [mu]s-long pulses in the samples tested is small, reducing the need for lamination. The field-induced extension does not begin at the same time as the field. Part of the delay is the time that the field takes to reach the threshold level for actuation. The mass-inertia of the sample results in an additional delay, which depends on the position and number of mobile twin-boundaries in the crystal. The delay is maximum for a single twin-boundary moving from the fixed to the free end of the crystal. For several twin-boundaries distributed uniformly throughout the crystal the delay is shorter. The peak acceleration observed is 50 ± 10 m/s². For typical twin-boundary energies of the order of 40 erg/cm² homogeneous nucleation of partial dislocations was found to be unlikely. Accordingly, twin-boundaries must be seeded through stress. High-speed video images and photographs have demonstrated that field-induced twin-boundary motion is not uniform along a Ni-Mn-Ga single crystal. Twin boundaries stop when they reach certain positions of the crystal, and remain pinned unless the field is increased. The observed scatter in the data of field-induced extension is related to the existence of pinning sites. The maximum rate of extension can be expressed as an exponential function of the driving force, andreaches 6 m/s for saturated driving force in the present case.
by Miguel Augusto Marioni.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Chunqing. "Crystallographic study on Ni-Mn-Sn metamagnetic shape memory alloys." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0359.

Full text
Abstract:
En tant que nouveau matériau magnétique à mémoire de forme, les alliages basés sur le système Ni-Mn-Sn possèdent de multiples propriétés physiques telles que l'effet de mémoire de forme des alliages polycristallins, l'effet magnétocalorique géant, l'effet de magnétorésistance et l'effet de polarisation d'échange. Jusqu'à présent, la plupart des études ont été axées sur l'amélioration des multifonctionnalités de ces alliages, mais l'information fondamentale qui est fortement associée à ces propriétés n'est toujours pas claire. Ainsi, une étude approfondie sur les structures cristallines de la martensite et de l'austénite, les caractéristiques microstructurales et cristallographiques de la transformation martensitique a été menée dans le cadre du présent travail de doctorat. Il a été confirmé que l'austénite de Ni50Mn37.5Sn12.5 possède une structure cubique L21 (Fm3 ̅m, No.225). Le paramètre de réseau de l'austénite dans Ni50Mn37.5Sn12.5 est aA = 5.9813 Å. La martensite possède une structure orthorhombique (4O) à quatre couches (Pmma, No.51). Les paramètres de réseau de la martensite dans Ni50Mn38Sn12 et Ni50Mn37.5Sn12.5 sont a4O = 8.6068 Å; b4O = 5.6226 Å and c4O = 4.3728 Å, and a4O = 8.6063 Å, b4O = 5.6425 Å, and c4O = 4.3672Å, respectivement. La martensite 4O Ni-Mn-Sn présente une microstructure hiérarchiquement maclée. La martensite est organisée en larges plaques dans le grain d'austénite d'origine. Les plaques contiennent des colonies à forme irrégulière avec deux modèles caractéristiques de microstructures : le motif lamellaire classique et le motif en arête de poisson. Dans chaque colonie, il existe quatre variantes d'orientation (A, B, C et D) et elles forment trois types de macles (Type I, Type II et macles composées). Les interfaces entre les variantes correspondantes sont en coincidence avec leur plan de maclage K1. Les plans d'interface des paires de macles composées A-D et B-C peuvent avoir une ou deux orientations différentes, ce qui conduit aux deux modèles microstructuraux. Les variantes correspondantes dans les colonies voisines dans une même large plaque (colonies intra-plaques) possèdent des orientations proches et le joint de colonie est courbé, tandis que la limite de colonie inter-plaques est relativement droite. La relation d’orientation de Pitsch (Orientation Relation OR), spécifiée comme {1 0 1} A//{22 ̅1}4O and <1 0 1 ̅> A//<1 ̅2 2>4O, a été exclusivement déterminée à être une OR effective entre l'austénite cubique et la martensite modulée 4O. Sous cette OR, 24 variantes peuvent être générées dans un grain d'austénite. Ces 24 variantes sont organisées en 6 groupes et chaque groupe correspond à une colonie de martensite. La structure de martensite finement maclée (microstructure sandwich) est le composant microstructural de base produit par la transformation martensitique. Une telle structure assure une interface de phase invariante (plan d'habitat) pour la transformation. Au cours de la transformation, les variantes de la martensite sont organisées en clusters en forme de diamant composés de colonies de variantes et avec des structures en forme de coin au front de transformation. Chaque coin est composé de deux structures sandwich séparées par un plan de nervure médiane {1 0 1}A. Les paires de variantes dans chaque coin devraient avoir le même type de macles avec une relation de Type I ou de Type II pour garantir de bonnes compatibilités géométriques des variantes à l'interface de phase et au plan de la nervure centrale. Dans les diamants, les colonies sont séparées par des frontières présentant des marches à faible énergie interfaciale qui évoluent vers les joints des colonies intra-plaques et par des joints droits qui deviennent les joints entre les plaques. Les diamants s'allongent le long de la direction presque parallèle aux plans de la nervure centrale des coins et la forme de la plaque de la martensite est finalement formée. [...]
Being a novel magnetic shape memory material, Ni-Mn-Sn based alloy systems possess multiple physical properties, such as shape memory effect of polycrystalline alloys, giant magnetocaloric effect, large magnetoresistance effect and exchange bias effect. So far, most studies have been focused on the improvement of the multifunctionalities of these alloys, but the fundamental information which is highly associated with these properties is still unclear. Thus, a thorough study on the crystal structures of martensite and austenite, microstructural and crystallographic features of martensitic transformation has been conducted in the present PhD work. The austenite of Ni50Mn37.5Sn12.5 was confirmed to possess a L21 cubic structure (Fm"3" ̅m, No.225). The lattice parameter of austenite in Ni50Mn37.5Sn12.5 is aA=5.9813 Å. The martensite possesses a four-layered orthorhombic (4O) structure (Pmma, No.51). The lattice parameters of martensite in Ni50Mn38Sn12 and Ni50Mn37.5Sn12.5 are a4O = 8.6068 Å; b4O = 5.6226 Å and c4O = 4.3728 Å, and a4O = 8.6063 Å, b4O = 5.6425 Å, and c4O = 4.3672Å, respectively. The 4O Ni-Mn-Sn martensite exhibits a hierarchically twinned microstructure. The martensite is organized into broad plates in the original austenite grain. The plates contain irregularly shaped colonies with two characteristic microstructural patterns: classical lamellar pattern and herring-bone pattern. In each colony, there are four orientation variants (A, B, C and D) and they form three types of twins (Type I, Type II and compound twin). The interfaces between the corresponding variants are in coincidence with their twinning plane K1. The interface planes of the compound twin pairs A-D and B-C can have one or two different orientations, which leads to the two microstructural patterns. The corresponding variants in the neighboring colonies within one broad plate (intra plate colonies) possess close orientations and colony boundary is curved, whereas the inter plate colony boundary is relatively straight. The Pitsch OR, specified as "{1 0 1}" A//"{2 " "2" ̅" " "1" ̅"}" 4O and "<1 0 " "1" ̅">" A//"<" "1" ̅" " "2" ̅" 2>" 4O, was uniquely determined to be an effective OR between the cubic austenite and 4O modulated martensite. Under this OR, 24 variants can be generated within one austenite grain. Such 24 variants are organized into 6 groups and each group corresponds to a martensite colony. The finely twinned martensite structure (sandwich microstructure) is the basic microstructural constitute produced by martensitic transformation. Such a structure ensures an invariant phase interface (habit plane) for the transformation. During the transformation, martensite variants are organized into diamond shaped clusters composed of variant colonies and with wedge shaped structures at the transformation front. Each wedge is composed of two sandwich structures separating by a midrib plane {1 0 1}A. The variant pairs in each wedge should have the same twin type with either Type I or Type II relation to ensure good geometrical compatibilities of the variants at phase interface and at the midrib plane. Within the diamonds, colonies are separated by step-like boundaries with low interfacial energy that evolve into the intra plate colony boundaries and by straight boundaries that become the inter plate colony boundaries. The diamonds elongates along the direction nearly paralleled to the midrib planes of the wedges and plate shape of martensite is finally formed. Such features of the diamond structure in Ni-Mn-Sn alloys are realized by self-accommodation of transformation strains for energy minimization. The present work provides comprehensive microstructural and crystallographic information on martensite and on martensitic transforamtion of Ni-Mn-Sn alloys and it is useful for understanding their multi functionalities associated with martensitic transformation and helpful on property optimization
APA, Harvard, Vancouver, ISO, and other styles
8

Chulist, Robert [Verfasser], Werner [Akademischer Betreuer] Skrotzki, and Heinz-Günter [Akademischer Betreuer] Brokmeier. "Structure and Properties of Twin Boundaries in Ni-Mn-Ga Alloys / Robert Chulist. Gutachter: Werner Skrotzki ; Heinz-Günter Brokmeier. Betreuer: Werner Skrotzki." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://d-nb.info/1067190015/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martins, Juliana de Paula. "Evolução da microestrutura e da textura durante o processamento de chapas da liga Al-Mn-Fe-Si (3003) produzidas por lingotamento contínuo: um estudo comparativo com o processo semi-contínuo." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-31012006-124433/.

Full text
Abstract:
A principal motivação para o desenvolvimento do presente projeto de doutorado foi comparar as microestruturas e texturas resultantes da liga de alumínio 3003 obtida por lingotamento contínuo e semicontínuo. O processo “roll caster” (lingotamento contínuo em cilindros) tem sido crescentemente utilizado na indústria de laminação de alumínio. Produtos que antes sofriam altos graus de deformação durante seu processamento são hoje obtidos nas dimensões próximas da espessura final. Com o intuito de entender este processo relativamente novo, as microestruturas e as texturas (macrotextura e microtextura), ao longo da espessura, das chapas produzidas por lingotamento contínuo e por lingotamento semicontínuo (placas fundidas com 250 mm de espessura, seguido de homogeneização e laminação a quente) foram analisadas. Foi possível constatar que os materiais provenientes dos dois processos diferem bastante e que ao longo da espessura também há grandes diferenças. Foi possível observar que durante o processamento “roll caster” há considerável deformação plástica, com a formação de células de discordâncias e subgrãos. Foi possível observar, também, que a microestrutura, a morfologia e o tamanho de grão, da amostra “caster” bruta de fundição são mais homogêneos que na amostra laminada a quente. As duas chapas, a laminada a quente e a obtida por lingotamento contínuo, exibem forte gradiente de textura ao longo da espessura. A textura predominante nos dois processos, ao longo da espessura, é a do tipo latão {011}. A evolução da textura do material proveniente do processo “roll caster” também foi caracterizada após laminação e posterior recristalização, revelando a presença de componentes típicas de laminação e de recristalização de alumínio. Após laminação a frio com redução de 91% e posterior tratamento térmico de 400°C por 1 h, a chapa proveniente do processo “caster” apresentou uma textura de recristalização caracterizada pela presença da componente cubo (recristalização) somada à parcela de textura de deformação. No caso do alumínio e suas ligas, sabe-se que esta textura proporciona os melhores resultados para minimizar o efeito de orelhamento durante a estampagem. Outro ponto relevante do trabalho foi o aperfeiçoamento da técnica de extração de precipitados para a liga 3003, uma vez que, a extração de precipitados em ligas de alumínio é especialmente problemática, pois a maioria das partículas presentes dissolve-se até mais facilmente que a matriz de alumínio. Algumas técnicas foram testadas: 1. dissolução química em solução de iodo em metanol; 2. dissolução eletrolítica em solução de ácido benzóico e hidroxiquinolina em clorofórmio e metanol; 3. dissolução eletrolítica em solução de ácido perclórico, butil glicol, álcool etílico e água; 4. dissolução química em solução de fenol. A técnica que apresentou melhores resultados foi a dissolução química com fenol, onde foi possível separar os precipitados da matriz alumínio. Com o auxílio desta técnica foi possível analisar as transformações de fase do composto intermetálico Al6Mn durante tratamentos térmicos. Obtiveram-se dados da completa transformação da fase Al6Mn em alfa-AlMnSi, também conhecida na literatura como, transformação "six to alfa". A precipitação e os precipitados desempenham um papel importante na cinética de recristalização e no tamanho de grão final. Para se entender este comportamento, comparou-se uma chapa que sofreu tratamento térmico antes da laminação com outra chapa que foi laminada no estado bruto de fundição. Os resultados revelaram que a recristalização foi retardada na amostra, inicialmente, bruta de fundição. A precipitação ocorreu simultaneamente com a recristalização, com isso, os dispersóides precipitaram preferencialmente na microestrutura deformada, em subcontornos ou nas discordâncias isoladas, levando a um considerável atraso no rearranjo das discordâncias e na nucleação da recristalização.
The main reason for the development of this PhD Thesis was to compare the microstructures and textures of the 3003 aluminum alloy produced from continuous and semi-continuous casting processes. The roll caster process (continuous casting) has been increasingly used in the aluminum industry. Products usually obtained by means of heavy rolling operations in the past are nowadays obtained with dimensions close to the final ones using the roll caster technology. To understand this new process, microstructures and textures (macrotexture and microtexture) along the thickness of the sheet produced by continuos casting and semi-continuous casting (plates with 250 mm thickness, followed by homogenization and hot rolling) have been investigated. It was possible to verify that materials coming from these two processes did differ each other a lot mainly across the thickness. During roll casting the plastic deformation was large enough to promote the formation of dislocation cells and subgrains. It was also possible to notice that the microstructure, morphology, and grain size from as-cast sample are more homogenous than the ones found in hot rolled samples. Both the sheets obtained by hot rolling and continuous casting have shown a strong texture gradient across the thickness. The predominant texture in both processes is the Brass component {011} . The texture evolution from sheets obtained by roll casting was also determined after rolling and subsequent recrystallization. It shows the presence of typical components of rolling and recrystallization of aluminum. After 91% cold rolling and subsequent recrystallization at 400°C for 1 h, the cube component (recrystallization texture) and the deformation texture were observed. It is well known that this texture minimizes earing effects during deep drawing of aluminum products. Another relevant point in this work was the development of the technique for the extraction of precipitates for the aluminum 3003 alloy. The extraction of precipitates extraction is particularly problematic in aluminum because most of the particles tend to dissolve more readily than the aluminum matrix. Some of the techniques performed are the following: 1. chemical dissolution with iodine in methanol solution; 2. electrolytic dissolution with benzoic acid and hydroxyquinoline in chloroform and methanol; 3. electrolytic dissolution with perchloric acid, butyl-glycol and ethanol; 4. chemical dissolution with phenol solution. Chemical dissolution with the phenol solution was the technique that provided the best results. It was possible to separate precipitates from the aluminum matrix. With this extraction technique it was possible to analyze phase transformations of the intermetallic compound Al6Mn during heat treating of this alloy. The phase transformation of the Al6Mn compound into alfa-AlMnSi, also known as 6-to-alfa transformation, could be followed in detail by means of this technique. Precipitation plays an important role in the recrystallization kinetics and final grain size. Therefore, to understand this behavior, the roll cast aluminum alloy was cold rolled from two distinct starting conditions: as-cast and heat-treated (homogeneized) conditions. It was shown that recrystallization was delayed in the sheet rolled from the as-cast condition. Precipitation has occurred simultaneously with recrystallization, in such a manner that dispersoids did precipitate in the deformed microstructure, preferentially, at subgrain boundaries or at free dislocations. As a result, the rearrangement of the dislocations and further recrystallization nucleation has been significantly retarded.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Yu-chang, and 黃玉璋. "Effect of Mn、Al on mechanical properties in TWIP steels after cold rolling." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/97387087075257754786.

Full text
Abstract:
碩士
國立高雄大學
化學工程及材料工程學系碩士班
99
This study focused on the effect of Mn and Al alloys on the mechanical properties in cold-rolled TWIP steels, however, the effect of strain rate on mechanical properties was also investigated. In this study, steels were adopted as the test materials. According to thermodynamic calculation, the stacking fault energy of the 21Mn、24Mn and 24Mn-4Al were 21.9 mJ/m2, 29.2 mJ/m2 and 58.7 mJ/m2, respectively. It reveals that stacking fault energy increased with addition of manganese and aluminum. As the mechanical property, tensile test was carried out to investigate the TWIP steels tensile strength (T.S.), elongation (El.), and toughness (T.S.×El.) with various strain rates of 3.3×10-3s-1、3.3×10-2s-1、10-1s-1. The results showed that 21Mn possessed the maximum (T.S.) of 907.6MPa. and 24Mn possessed the maximum elongation (El.) of 78.9%. In addition, 24Mn-4Al possessed the maximum Y.S. of 352.9MPa. Summary the results of mechanical properties showed that 24Mn steel possessed the superior toughness of 69645.03MPa% (T.S.×El. value), while strain rate of 3.3×10-3s-1. 21Mn and 24Mn-4Al steels were 54819.04 MPa% and 43918.75 MPa%, respectively. From XRD results, 24Mn and 24Mn-4Al steels possessed stableγphase, even though after deformed. It was noticed the 21Mn specimen possessed γ(F.C.C.) structure before tensile test and obtained the phase transformation fromγ transform to εafter tensile test. The TEM results revealed ε-martensite and twin co-exist in 21Mn, it supported that deformation mechanism is TRIP and TWIP under tensile test. Only mechanical twin structure was observed in 24Mn, resulting in obtaining TWIP deformation mechanism. Moreover 24Mn-4Al possessed dislocation entanglement phenomenon and twin structure; as a result its deformation mechanism was classified to dislocation slip and partly TWIP mode. As the effect of strain rate on mechanical property with TWIP steels, the elongation (El.) of 21Mn was increased from 60.4% to 75.07% with strain rate increasing. In addition, the value of T.S.×El. was also increased to 68024.02 MPa%. However, 24Mn possessed the highest value of T.S.×El. reached to 69029 MPa%. But the strain rate was not affect the mechanical property of 24Mn-4Al significantly.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mn TWIP"

1

Day, Holly. Insiders' guide to the Twin Cities. 3rd ed. Guilford, Conn: Globe Pequot Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

60 hikes within 60 miles, Minneapolis and St. Paul: Includes hikes in and around the Twin Cities. 3rd ed. Birmingham, AL: Menasha Ridge Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Day, Holly, and Sherman Wick. Insiders' Guide to the Twin Cities, 3rd (Insiders' Guide Series). Insiders' Guide, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mn TWIP"

1

Dobrzański, L. A., W. Borek, and J. Mazurkiewicz. "TWIP Mechanism in High-Mn Austenitic Steels and Its Effect on Steels Properties." In Frontiers in Materials Processing, Applications, Research and Technology, 321–31. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4819-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dobrzański, Leszek A., Janusz Mazurkiewicz, Wojciech Borek, and Małgorzata Czaja. "Newly-Developed High-Manganese Fe–Mn–(Al, Si) Austenitic TWIP and TRIP Steels." In Rolling of Advanced High Strength Steels, 224–88. Boca Raton, FL : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120577-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Collet, J. L., Françoise Bley, Alexis Deschamps, H. de Monestrol, Jean François Berar, and Colin Scott. "The Deformation Mechanisms of TWIP Steels (Fe-Mn-C) Viewed by X-Ray Diffraction." In Solid State Phenomena, 53–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-40-x.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Collet, J. L., Françoise Bley, Alexis Deschamps, and Colin Scott. "Study of the Deformation Mechanisms of TWIP Steels (Fe-Mn-C) by X-Ray Diffraction." In THERMEC 2006 Supplement, 822–27. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamada, A. S., L. Pentti Karjalainen, Mahesh C. Somani, and R. M. Ramadan. "Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures." In Materials Science Forum, 217–22. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-434-0.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chulist, R., L. Straka, A. Sozinov, N. Lanska, A. Soroka, C. G. Oertel, and W. Skrotzki. "Segmented Twin Boundaries in 10M Modulated Ni-Mn-Ga Martensite." In TMS2013 Supplemental Proceedings, 959–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663547.ch119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verbeken, Kim, Lieven Bracke, Leo Kestens, and Jan Penning. "Microstructural and Textural Evolutions in a Cold Rolled High mn Twlp Steel." In Ceramic Transactions Series, 341–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470444191.ch38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reinhold, Matthew, William B. Knowlton, and Peter Müllner. "Characterizing Twin Structure and Magnetic Domain Structure of Ni-Mn-Ga through Atomic Force Microscopy." In ICOMAT, 299–304. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118803592.ch42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vronka, M., M. Karlík, Y. Ge, and O. Heczko. "Comparison of Highly Mobile Twin Boundaries in Cu–Ni–Al and Ni–Mn–Ga Shape Memory Single Crystals." In Proceedings of the International Conference on Martensitic Transformations: Chicago, 257–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Slámová, Margarita, P. Sláma, and Miroslav Cieslar. "The Influence of Alloy Composition on Phase Transformations and Recrystallization in Twin-Roll Cast Al-Mn-Fe Alloys." In Materials Science Forum, 365–70. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-408-1.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mn TWIP"

1

Varga, M., L. Janka, M. Rodríguez Ripoll, L. M. Berger, S. Thiele, V. Matikainen, P. Vuoristo, L. Janka, and H. Ben Hamouda. "High Temperature Sliding of TiC Based Hardmetal Coatings Against TWIP Steel." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0278.

Full text
Abstract:
Abstract Manufacturing of steel components is often done at high temperatures (HT) posing a serious challenge to components such as forming tools. Thermal spray coatings provide a cost-effective solution for surface protection under HT, corrosive environments and severe wear conditions. Thermally sprayed coatings based on cubic hard materials such as TiC and TiCN can provide an alternative to widely used Cr3C2-NiCr. While the latter possess a superb oxidation resistance and wear resistance at HT, they are prone to degradation in the presence of Mn, an element commonly alloyed in many modern steel grades such as TWIP (twinning-induced plasticity steel). In this study, a (Ti,Mo)(C,N)-29% Ni hardmetal feedstock powder was prepared by agglomeration and sintering. Coatings were deposited using a high velocity air-fuel (HVAF) spray process. The coating was benchmarked against a standard Cr3C2-NiCr coating obtained with the same spray process. Our work comprises analyses of the feedstock powder along with the resulting coating microstructure after deposition and heat treatment. Further, the HT sliding behavior against TWIP steel using a HT pin-on-disc tribometer at 700°C was investigated. The results showed a clear benefit of the TiCN-based coating, with almost no wear detected, while the Cr3C2-coating showed a significant wear loss. Based on these results, the TiCN-based coating is regarded as potential solution for prospective forming applications of modern high Mn steels, such as TWIP.
APA, Harvard, Vancouver, ISO, and other styles
2

Dolzhenko, P., M. Tikhonova, A. Belyakov, and R. Kaibyshev. "Dynamic recrystallization of a high-Mn TWIP steel during multiple forging at 800°C." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kusakin, Pavel, Andrey Belyakov, and Rustam Kaibyshev. "Analysis of the tensile behavior of high-Mn TWIP steel based on the microstructural evolution." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tikhonova, M., P. Dolzhenko, A. Belyakov, and R. Kaibyshev. "Effect of hot working conditions on microstructure and mechanical properties of a high-Mn TWIP steel." In PROCEEDINGS OF THE ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. Author(s), 2018. http://dx.doi.org/10.1063/1.5083547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

da Silva Lima, M. N. "Microstructural and corrosion study of a “non-comercial” high manganese steel." In Superplasticity in Advanced Materials. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902615-37.

Full text
Abstract:
Abstract. High-Mn steels have great plasticity when subjected to deformation due to TWIP or TRIP effects. This work evaluated the microstructural evolution, the formation of the -Martensite phase taking into account the hot rolling of 80-60% and the solution annealing. Afterwards, microstructures were analyzed by SEM. Volume fraction of the Austenite and -Martensite phases were measured by EBSD technique. The steel obtained low energy levels of stacking fault, favoring the effect TRIP. Corrosion resistance in 0.1M NaCl solution was analyzed by open potential circuit and potentiodynamic polarization techniques. The analysis of the curves and the surface of the steel after the polarization tests showed that the steel with less strain had relatively nobler potential than the steel with more strain.
APA, Harvard, Vancouver, ISO, and other styles
6

Weslei Patrick Teodósio Sousa, Dagoberto Brandão Santos, and Sara Silva Ferreira de Dafé. "Estudo dos mecanismos de deformação em um aço TRIP/TWIP com 17% de Mn e baixo C submetido a esforços de tração." In IX Congresso Nacional de Engenharia Mecânica. Rio de Janeiro, Brazil: ABCM Associação Brasileira de Engenharia e Ciências Mecânicas, 2016. http://dx.doi.org/10.20906/cps/con-2016-0391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Faidley, LeAnn E., Marcelo J. Dapino, Gregory N. Washington, and Thomas A. Lograsso. "Dynamic Response in the Low-kHz Range and Delta-E Effect in Ferromagnetic Shape Memory Ni-Mn-Ga." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43198.

Full text
Abstract:
Recent work on ferromagnetic shape memory nickel-manganese-gallium (Ni-Mn-Ga) has demonstrated several characteristics which make this material attractive as an active element for the next generation of intelligent transducers. Alloys of martensitic Ni-Mn-Ga can strain up to 6% as a result of the rotation of twin variants and associated twin boundary motion which occur in these materials in response to magnetic fields. The magnetic actuation holds promise in transducer design because it can lead to enhanced frequency response compared with shape memory alloys with comparable strains. In this paper, we report on experimental measurements collected from a Ni50Mn28.7Ga21.3 sample which has been tested in a solenoid transducer by means of a novel drive configuration consisting of a collinear uniaxial field-uniaxial stress pair. We have observed that the elastic modulus of a Ni-Mn-Ga sample driven in these conditions changes substantially in response to varying bias field. In this paper, we further investigate the dependence of the elastic modulus on ac field intensity and mechanical load as well as bias field. Quasistatic, white noise, and swept-sine excitations were employed to examine the behavior of Ni50Mn28.7Ga21.3 driven under various combinations of magnetic fields and mechanical loads. Mechanically free quasi-static tests demonstrate reversible strains of 6300 με which are consistent with prior measurements on samples with similar composition near the Heusler stoichiometry. Dynamic measurements reveal a significant stiffness increase, of up to 209%, with dc bias field. This frequency shift or ΔE effect is shown to originate in the Ni-Mn-Ga sample and is believed to stem from the reorientation of twin variants in response to varying dc field. These results might facilitate a new class of solenoid-based Ni-Mn-Ga transducers for tunable vibration absorber applications, and lay the ground work for developing methods and criteria for the implementation of broadband Ni-Mn-Ga transducer technologies.
APA, Harvard, Vancouver, ISO, and other styles
8

Warbritton, Alexandra, Austin Eiler, Austin Langford, Benjamin Geadlemann, Celia Gonzalez, Chad Serba, Christopher Gosch, et al. "Eclipse-Ballooning 2017: The U of MN–Twin Cities Experience." In 2017 Academic High Altitude Conference. Iowa State University Digital Press, 2017. http://dx.doi.org/10.31274/ahac.5548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kiang, Jademond, and Liyong Tong. "Characterization of Ni-Mn-Ga Shape Memory Single Crystals for Magnetic Properties and Magnetic Field Induced Shear and Normal Strains." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9133.

Full text
Abstract:
This paper presents a novel experimental apparatus and a test method for measuring simultaneously quasi-static average longitudinal and shear magnetic-field-induced strain (MFIS) of Ni-Mn-Ga single crystals. The apparatus consists of an aluminum casing, a weight-controlled plunger, two displacement probes (one vertical and one lateral), and a torsion guide etc. Three Ni-Mn-Ga square prism samples were tested. Twin boundary bands were clearly visible after the application of magnetic field. A range of material properties were measured. These include: (a) magnetic anisotropy constant; (b) single variant magnetization curves for the easy and hard axes; (c) nonlinear compressive stress-strain curves for all three samples at room temperature; and (d) average longitudinal and shear MFIS curves versus magnetic field strength for three prism samples subject to various compressive external stresses.
APA, Harvard, Vancouver, ISO, and other styles
10

Horibe, Y., S. Takeyama, and S. Mori. "Large-scale phase separation with nano-twin domains in manganite spinel (Co,Fe,Mn)3O4." In FRONTIERS IN MATERIALS SCIENCE (FMS2015): Proceedings of the 2nd International Symposium on Frontiers in Materials Science. Author(s), 2016. http://dx.doi.org/10.1063/1.4961358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography