Journal articles on the topic 'MMWAVE PROPAGATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MMWAVE PROPAGATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Al-Saman, Ahmed, Michael Cheffena, Olakunle Elijah, Yousef A. Al-Gumaei, Sharul Kamal Abdul Rahim, and Tawfik Al-Hadhrami. "Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments." Electronics 10, no. 14 (2021): 1653. http://dx.doi.org/10.3390/electronics10141653.
Full textLiu, Baobao, Pan Tang, Jianhua Zhang, Yue Yin, Guangyi Liu, and Liang Xia. "Propagation Characteristics Comparisons between mmWave and Visible Light Bands in the Conference Scenario." Photonics 9, no. 4 (2022): 228. http://dx.doi.org/10.3390/photonics9040228.
Full textRodríguez-Corbo, Fidel, Leyre Azpilicueta, Mikel Celaya-Echarri, et al. "Millimeter Wave Spatial Channel Characterization for Vehicular Communications." Proceedings 42, no. 1 (2019): 64. http://dx.doi.org/10.3390/ecsa-6-06562.
Full textRodríguez-Corbo, Fidel Alejandro, Leyre Azpilicueta, Mikel Celaya-Echarri, Peio Lopez-Iturri, Ana V. Alejos, and Francisco Falcone. "Deterministic Propagation Approach for Millimeter-Wave Outdoor Smart Parking Solution Deployment." Engineering Proceedings 2, no. 1 (2020): 81. http://dx.doi.org/10.3390/ecsa-7-08231.
Full textGulfam, Sardar, Syed Nawaz, Konstantinos Baltzis, Abrar Ahmed, and Noor Khan. "Characterization of Fading Statistics of mmWave (28 GHz and 38 GHz) Outdoor and Indoor Radio Propagation Channels." Technologies 7, no. 1 (2019): 9. http://dx.doi.org/10.3390/technologies7010009.
Full textRahayu, Ismalia, and Ahmad Firdausi. "5G Channel Model for Frequencies 28 GHz, 73 GHz and 4 GHz with Influence of Temperature in Bandung." Jurnal Teknologi Elektro 13, no. 2 (2022): 94. http://dx.doi.org/10.22441/jte.2022.v13i2.006.
Full textDos Anjos, Andre Antonio, Tiago Reis Rufino Marins, Carlos Rafael Nogueira Da Silva, et al. "Higher Order Statistics in a mmWave Propagation Environment." IEEE Access 7 (2019): 103876–92. http://dx.doi.org/10.1109/access.2019.2930931.
Full textYao, H., X. Wang, H. Qi, and X. Liang. "TIGHTLY COUPLED INDOOR POSITIONING USING UWB/MMWAVE RADAR/IMU." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVI-3/W1-2022 (May 5, 2022): 323–29. http://dx.doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-323-2022.
Full textJiang, Ting, Maozhong Song, Xiaorong Zhu, and Xu Liu. "Channel Estimation for Broadband Millimeter Wave MIMO Systems Based on High-Order PARALIND Model." Wireless Communications and Mobile Computing 2021 (November 23, 2021): 1–12. http://dx.doi.org/10.1155/2021/6408442.
Full textIdan, Hayder R., Basim K. AL-Shammari, and Hasan F. Khazal. "mmWave Compound Link Budget Model of Dust and Humidity Effect." Wasit Journal of Engineering Sciences 11, no. 1 (2023): 45–60. http://dx.doi.org/10.31185/ejuow.vol11.iss1.323.
Full textRodríguez-Corbo, Fidel Alejandro, Leyre Azpilicueta, Mikel Celaya-Echarri, et al. "Deterministic 3D Ray-Launching Millimeter Wave Channel Characterization for Vehicular Communications in Urban Environments." Sensors 20, no. 18 (2020): 5284. http://dx.doi.org/10.3390/s20185284.
Full textAzpilicueta, Leyre, Peio Lopez-Iturri, Jaime Zuñiga-Mejia, et al. "Fifth-Generation (5G) mmWave Spatial Channel Characterization for Urban Environments’ System Analysis." Sensors 20, no. 18 (2020): 5360. http://dx.doi.org/10.3390/s20185360.
Full textAntonescu, Bogdan, Miead Tehrani Moayyed, and Stefano Basagni. "Clustering Algorithms and Validation Indices for a Wide mmWave Spectrum." Information 10, no. 9 (2019): 287. http://dx.doi.org/10.3390/info10090287.
Full textKei Sakaguchi, Takumi Yoneda, Masashi Iwabuchi, and Tomoki Murakami. "mmWave massive analog relay MIMO." ITU Journal on Future and Evolving Technologies 2, no. 6 (2021): 43–55. http://dx.doi.org/10.52953/wzof2275.
Full textAttiah, Mothana L., Azmi Awang Md Isa, Zahriladha Zakaria, Nor Fadzilah Abdullah, Mahamod Ismail, and Rosdiadee Nordin. "Adaptive Multi-state Millimeter Wave Cell Selection Scheme for 5G communication." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (2018): 2967. http://dx.doi.org/10.11591/ijece.v8i5.pp2967-2978.
Full textLiang, Yiqun, Hui Li, Yuan Tian, Yi Li, and Wenhua Wang. "SDR-Based 28 GHz mmWave Channel Modeling of Railway Marshaling Yard." Sensors 23, no. 19 (2023): 8108. http://dx.doi.org/10.3390/s23198108.
Full textMeng, Xi, Liyuan Zhong, Dong Zhou, and Dacheng Yang. "Co-Channel Coexistence Analysis between 5G IoT System and Fixed-Satellite Service at 40 GHz." Wireless Communications and Mobile Computing 2019 (October 7, 2019): 1–9. http://dx.doi.org/10.1155/2019/9790219.
Full textLi, Yifa, Wei Fan, Huaqiang Gao, and Fengchun Zhang. "Experimental Validation and Applications of mm-Wave 8 × 8 Antenna-in-Package (AiP) Array Platform." Electronics 11, no. 23 (2022): 4055. http://dx.doi.org/10.3390/electronics11234055.
Full textRubio, Lorenzo, Vicent M. Rodrigo Peñarrocha, Marta Cabedo-Fabres, et al. "Millimeter-Wave Channel Measurements and Path Loss Characterization in a Typical Indoor Office Environment." Electronics 12, no. 4 (2023): 844. http://dx.doi.org/10.3390/electronics12040844.
Full textBegishev, Vyacheslav, Dmitri Moltchanov, Anna Gaidamaka, and Konstantin Samouylov. "Closed-Form UAV LoS Blockage Probability in Mixed Ground- and Rooftop-Mounted Urban mmWave NR Deployments." Sensors 22, no. 3 (2022): 977. http://dx.doi.org/10.3390/s22030977.
Full textZhong, Zhimeng, Jianyao Zhao, and Chao Li. "Outdoor-to-Indoor Channel Measurement and Coverage Analysis for 5G Typical Spectrums." International Journal of Antennas and Propagation 2019 (September 16, 2019): 1–10. http://dx.doi.org/10.1155/2019/3981678.
Full textMd Jizat, Noorlindawaty, Zubaida Yusoff, Azah Syafiah Mohd Marzuki, Norsiha Zainudin, and Yoshihide Yamada. "Insertion Loss and Phase Compensation Using a Circular Slot Via-Hole in a Compact 5G Millimeter Wave (mmWave) Butler Matrix at 28 GHz." Sensors 22, no. 5 (2022): 1850. http://dx.doi.org/10.3390/s22051850.
Full textKhawaja, Wahab, Ozgur Ozdemir, and Ismail Guvenc. "Channel Prediction for mmWave Ground-to-Air Propagation Under Blockage." IEEE Antennas and Wireless Propagation Letters 20, no. 8 (2021): 1364–68. http://dx.doi.org/10.1109/lawp.2021.3078268.
Full textQamar, Faizan, Mhd Nour Hindia, Tharek Abd Rahman, Rosilah Hassan, Kaharudin Dimyati, and Quang Ngoc Nguyen. "Propagation Characterization and Analysis for 5G mmWave Through Field Experiments." Computers, Materials & Continua 68, no. 2 (2021): 2249–64. http://dx.doi.org/10.32604/cmc.2021.017198.
Full textHe, Danping, Bo Ai, Ke Guan, et al. "Influence of Typical Railway Objects in a mmWave Propagation Channel." IEEE Transactions on Vehicular Technology 67, no. 4 (2018): 2880–92. http://dx.doi.org/10.1109/tvt.2017.2782268.
Full textBedda Zekri, Abdelbasset, and Riadh Ajgou. "Towards 5G: A study of the impact of antenna polarization on statistical channel modeling." Sustainable Engineering and Innovation 4, no. 1 (2022): 97–103. http://dx.doi.org/10.37868/sei.v4i1.id168.
Full textDomingo, Mari Carmen. "Power Allocation and Energy Cooperation for UAV-Enabled MmWave Networks: A Multi-Agent Deep Reinforcement Learning Approach." Sensors 22, no. 1 (2021): 270. http://dx.doi.org/10.3390/s22010270.
Full textAbdulwahid, Maan M., and Noraldeen B. Mohammed Wasel. "Optimum AP Estimation Location for the communication of different mmWave bands." Informatica : Journal of Applied Machines Electrical Electronics Computer Science and Communication Systems 01, no. 01 (2020): 44–53. http://dx.doi.org/10.47812/ijamecs2010107.
Full textSarker, Md Abdul Latif, Woosung Son, and Dong Seog Han. "RIS-Assisted Hybrid Beamforming and Connected User Vehicle Localization for Millimeter Wave MIMO Systems." Sensors 23, no. 7 (2023): 3713. http://dx.doi.org/10.3390/s23073713.
Full textRen, Ming-Hao, Xi Liao, Jihua Zhou, et al. "Diffuse Scattering Directive Model Parameterization Method for Construction Materials at mmWave Frequencies." International Journal of Antennas and Propagation 2020 (December 22, 2020): 1–9. http://dx.doi.org/10.1155/2020/1583854.
Full textProsvirov, Vladislav, Amjad Ali, Abdukodir Khakimov, and Yevgeni Koucheryavy. "Spatio-Temporal Coherence of mmWave/THz Channel Characteristics and Their Forecasting Using Video Frame Prediction Techniques." Mathematics 11, no. 17 (2023): 3634. http://dx.doi.org/10.3390/math11173634.
Full textCelaya-Echarri, Mikel, Leyre Azpilicueta, Fidel Alejandro Rodríguez-Corbo, et al. "Towards Environmental RF-EMF Assessment of mmWave High-Node Density Complex Heterogeneous Environments." Sensors 21, no. 24 (2021): 8419. http://dx.doi.org/10.3390/s21248419.
Full textDe Beelde, Brecht, Mike Vantorre, German Castellanos, Mario Pickavet, and Wout Joseph. "MmWave Physical Layer Network Modeling and Planning for Fixed Wireless Access Applications." Sensors 23, no. 4 (2023): 2280. http://dx.doi.org/10.3390/s23042280.
Full textKamboh, Usman Rauf, Muhammad Rehman Shahid, Hamza Aldabbas, et al. "Radio Network Forensic with mmWave Using the Dominant Path Algorithm." Security and Communication Networks 2022 (January 12, 2022): 1–15. http://dx.doi.org/10.1155/2022/9692892.
Full textComisso, Massimiliano, Giulia Buttazzoni, Stefano Pastore, Francesca Vatta, and Fulvio Babich. "3D Poisson-Based Neighborhood Capacity Analysis for Millimeter Wave Communications." Sensors 22, no. 6 (2022): 2098. http://dx.doi.org/10.3390/s22062098.
Full textJaksic, Dejan, Risto Bojovic, Petar Spalevic, Dusan Stefanovic, and Slavisa Trajkovic. "Performance Analysis of 5G Transmission over Fading Channels with Random IG Distributed LOS Components." International Journal of Antennas and Propagation 2017 (2017): 1–4. http://dx.doi.org/10.1155/2017/4287586.
Full textAldossari, Saud Alhajaj. "Predicting Path Loss of an Indoor Environment Using Artificial Intelligence in the 28-GHz Band." Electronics 12, no. 3 (2023): 497. http://dx.doi.org/10.3390/electronics12030497.
Full textYu, Xiaolu, Hang Li, Jian Andrew Zhang, Xiaojing Huang, and Zhiqun Cheng. "Enhanced Angle-of-Arrival and Polarization Parameter Estimation Using Localized Hybrid Dual-Polarized Arrays." Sensors 22, no. 14 (2022): 5207. http://dx.doi.org/10.3390/s22145207.
Full textWolf, Marius, Kai Werum, Wolfgang Eberhardt, Thomas Günther, and André Zimmermann. "Injection Compression Molding of LDS-MID for Millimeter Wave Applications." Journal of Manufacturing and Materials Processing 7, no. 5 (2023): 184. http://dx.doi.org/10.3390/jmmp7050184.
Full textHan, Tian, Davood Shojaei, Paul Fitzpatrick, Taka Sakurai, and Jamie Evans. "Urban 5G MmWave Networks: Line-of-Sight Probabilities and Optimal Site Locations." Journal of Telecommunications and the Digital Economy 11, no. 1 (2023): 107–30. http://dx.doi.org/10.18080/jtde.v11n1.640.
Full textKabalci, Yasin, and Muhammad Ali. "Improved Hybrid Precoder Design for Secure mmWave MIMO Communications." Elektronika ir Elektrotechnika 26, no. 4 (2020): 72–77. http://dx.doi.org/10.5755/j01.eie.26.4.25857.
Full textMajed, Mohammed Bahjat, Tharek Abd Rahman, Omar Abdul Aziz, Mohammad Nour Hindia, and Effariza Hanafi. "Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks." International Journal of Antennas and Propagation 2018 (September 20, 2018): 1–14. http://dx.doi.org/10.1155/2018/9142367.
Full textMehdi Haghshenas, Francesco Linsalata, Luca Barbieri, Mattia Brambilla, Monica Nicoli, and Maurizio Magarini. "Analysis of spatial scheduling in downlink vehicular communications: Sub-6 GHz vs mmWave." ITU Journal on Future and Evolving Technologies 3, no. 2 (2022): 523–34. http://dx.doi.org/10.52953/gewx7355.
Full textIwabuchi, Masashi, Yoghitha Ramamoorthi, and Kei Sakaguchi. "User-Driven Relay Beamforming for mmWave Massive Analog-Relay MIMO." Sensors 23, no. 2 (2023): 1034. http://dx.doi.org/10.3390/s23021034.
Full textRafiq, Ahsan, Reem Alkanhel, Mohammed Saleh Ali Muthanna, Evgeny Mokrov, Ahmed Aziz, and Ammar Muthanna. "Intelligent Resource Allocation Using an Artificial Ecosystem Optimizer with Deep Learning on UAV Networks." Drones 7, no. 10 (2023): 619. http://dx.doi.org/10.3390/drones7100619.
Full textDuan, Fei, Yuhao Guo, Zenghui Gu, Yanlong Yin, Yixin Wu, and Teyan Chen. "Optical Beamforming Networks for Millimeter-Wave Wireless Communications." Applied Sciences 13, no. 14 (2023): 8346. http://dx.doi.org/10.3390/app13148346.
Full textZhang, Ruonan, Yuliang Zhou, Xiaofeng Lu, Chang Cao, and Qi Guo. "Antenna Deembedding for mmWave Propagation Modeling and Field Measurement Validation at 73 GHz." IEEE Transactions on Microwave Theory and Techniques 65, no. 10 (2017): 3648–59. http://dx.doi.org/10.1109/tmtt.2017.2743702.
Full textAldalbahi, Adel, Farzad Shahabi, and Mohammed Jasim. "Instantaneous Beam Prediction Scheme against Link Blockage in mmWave Communications." Applied Sciences 11, no. 12 (2021): 5601. http://dx.doi.org/10.3390/app11125601.
Full textBegishev, Vyacheslav, Edward Sopin, Dmitri Moltchanov, Andrey Samuylov, Yuliya Gaidamaka, and Konstantin Samouylov. "Performance evaluation of bandwidth reservation for mmWave in 5G NR systems." Information and Control Systems, no. 5 (October 17, 2019): 51–63. http://dx.doi.org/10.31799/1684-8853-2019-5-51-63.
Full textShafik, Wasswa, S. Motjaba Matinkhah, Solagbade Saheed Afolabi, and Mamman Nur Sanda. "A 3-dimensional fast machine learning algorithm for mobile unmanned aerial vehicle base stations." International Journal of Advances in Applied Sciences 10, no. 1 (2021): 28. http://dx.doi.org/10.11591/ijaas.v10.i1.pp28-38.
Full text