To see the other types of publications on this topic, follow the link: MLT radars.

Journal articles on the topic 'MLT radars'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'MLT radars.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hasebe, F., T. Tsuda, T. Nakamura, and M. D. Burrage. "Validation of HRDI MLT winds with meteor radars." Annales Geophysicae 15, no. 9 (September 30, 1997): 1142–57. http://dx.doi.org/10.1007/s00585-997-1142-7.

Full text
Abstract:
Abstract. A validation study of the mesospheric and lower-thermospheric (MLT) wind velocities measured by the High-Resolution Doppler Imager (HRDI) on board the Upper-Atmosphere Research Satellite (UARS) has been carried out, comparing with observations by meteor radars located at Shigaraki, Japan and Jakarta, Indonesia. The accuracy of the HRDI winds relative to the meteor radars is obtained by a series of simultaneous wind measurements at the time of UARS overpasses. Statistical tests on the difference in the wind vectors observed by HRDI and the meteor radars are applied to determine whether the wind speed has been overestimated by HRDI (or underestimated by the MF radars) as previously noticed in HRDI vs. MF radar comparisons. The techniques employed are the conventional t-test applied to the mean values of the paired wind vector components as well as wind speeds, and two nonparametric tests suitable for testing the paired wind speed. The square-root transformation has been applied before the t-tests of the wind speed in order to fit the wind-speed distribution function to the normal distribution. The overall results show little evidence of overestimation by HRDI (underestimation by meteor radars) of wind velocities in the MLT region. Some exceptions are noticed, however, at the altitudes around 88 km, where statistical differences occasionally reach a level of significance of 0.01. The validation is extended to estimate the precision of the wind velocities by both HRDI and meteor radars. In the procedure, the structure function defined by the mean square difference of the observed anomalies is applied in the vertical direction for the profile data. This method assumes the isotropy and the homogeneity of variance for the physical quantity and the homogeneity of variance for the observational errors. The estimated precision is about 6ms–1 for the Shigaraki meteor radar, 15ms–1 for the Jakarta meteor radar, and 20ms–1 for HRDI at 90-km altitude. These values can be used to confirm the statistical significance of the wind field obtained by averaging the observed winds.
APA, Harvard, Vancouver, ISO, and other styles
2

Portnyagin, Y. I., T. V. Solovjova, N. A. Makarov, E. G. Merzlyakov, A. H. Manson, C. E. Meek, W. Hocking, et al. "Monthly mean climatology of the prevailing winds and tides in the Arctic mesosphere/lower thermosphere." Annales Geophysicae 22, no. 10 (November 3, 2004): 3395–410. http://dx.doi.org/10.5194/angeo-22-3395-2004.

Full text
Abstract:
Abstract. The Arctic MLT wind regime parameters measured at the ground-based network of MF and meteor radar stations (Andenes 69° N, Tromsø 70° N, Esrange 68° N, Dixon 73.5° N, Poker Flat 65° N and Resolute Bay 75° N) are discussed and compared with those observed in the mid-latitudes. The network of the ground-based MF and meteor radars for measuring winds in the Arctic upper mesosphere and lower thermosphere provides an excellent opportunity for study of the main global dynamical structures in this height region and their dependence from longitude. Preliminary estimates of the differences between the measured winds and tides from the different radar types, situated 125-273km apart (Tromsø, Andenes and Esrange), are provided. Despite some differences arising from using different types of radars it is possible to study the dynamical wind structures. It is revealed that most of the observed dynamical structures are persistent from year to year, thus permitting the analysis of the Arctic MLT dynamics in a climatological sense. The seasonal behaviour of the zonally averaged wind parameters is, to some extent, similar to that observed at the moderate latitudes. However, the strength of the winds (except the prevailing meridional wind and the diurnal tide amplitudes) in the Arctic MLT region is, in general, less than that detected at the moderate latitudes, decreasing toward the pole. There are also some features in the vertical structure and seasonal variations of the Arctic MLT winds which are different from the expectations of the well-known empirical wind models CIRA-86 and HWM-93. The tidal phases show a very definite longitudinal dependence that permits the determination of the corresponding zonal wave numbers. It is shown that the migrating tides play an important role in the dynamics of the Arctic MLT region. However, there are clear indications with the presence in some months of non-migrating tidal modes of significant appreciable amplitude.
APA, Harvard, Vancouver, ISO, and other styles
3

Stober, Gunter, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, et al. "Identifying gravity waves launched by the Hunga Tonga–Hunga Ha′apai volcanic eruption in mesosphere/lower-thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster." Annales Geophysicae 41, no. 1 (April 18, 2023): 197–208. http://dx.doi.org/10.5194/angeo-41-197-2023.

Full text
Abstract:
Abstract. The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals.
APA, Harvard, Vancouver, ISO, and other styles
4

Singer, W., J. Bremer, P. Hoffmann, A. H. Manson, C. E. Meek, R. Schminder, D. Kürschner, et al. "Geomagnetic influences upon tides—winds from MLT radars." Journal of Atmospheric and Terrestrial Physics 56, no. 10 (August 1994): 1301–11. http://dx.doi.org/10.1016/0021-9169(94)90068-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manson, A. H., C. E. Meek, C. M. Hall, S. Nozawa, N. J. Mitchell, D. Pancheva, W. Singer, and P. Hoffmann. "Mesopause dynamics from the scandinavian triangle of radars within the PSMOS-DATAR Project." Annales Geophysicae 22, no. 2 (January 1, 2004): 367–86. http://dx.doi.org/10.5194/angeo-22-367-2004.

Full text
Abstract:
Abstract. The "Scandinavian Triangle" is a unique trio of radars within the DATAR Project (Dynamics and Temperatures from the Arctic MLT (60–97km) region): Andenes MF radar (69°N, 16°E); Tromsø MF radar (70°N, 19°E) and Esrange "Meteor" radar (68°N, 21°E). The radar-spacings range from 125-270km, making it unique for studies of wind variability associated with small-scale waves, comparisons of large-scale waves measured over small spacings, and for comparisons of winds from different radar systems. As such it complements results from arrays having spacings of 25km and 500km that have been located near Saskatoon. Correlation analysis is used to demonstrate a speed bias (MF smaller than the Meteor) between the radar types, which varies with season and altitude. Annual climatologies for the year 2000 of mean winds, solar tides, planetary and gravity waves are presented, and show indications of significant spatial variability across the Triangle and of differences in wave characteristics from middle latitudes. Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides: instrument and techniques)
APA, Harvard, Vancouver, ISO, and other styles
6

van Caspel, Willem E., Patrick J. Espy, Robert E. Hibbins, and John P. McCormack. "Migrating tide climatologies measured by a high-latitude array of SuperDARN HF radars." Annales Geophysicae 38, no. 6 (December 21, 2020): 1257–65. http://dx.doi.org/10.5194/angeo-38-1257-2020.

Full text
Abstract:
Abstract. This study uses hourly meteor wind measurements from a longitudinal array of 10 high-latitude SuperDARN high-frequency (HF) radars to isolate the migrating diurnal, semidiurnal, and terdiurnal tides at mesosphere–lower-thermosphere (MLT) altitudes. The planetary-scale array of radars covers 180∘ of longitude, with 8 out of 10 radars being in near-continuous operation since the year 2000. Time series spanning 16 years of tidal amplitudes and phases in both zonal and meridional wind are presented, along with their respective annual climatologies. The method to isolate the migrating tides from SuperDARN meteor winds is validated using 2 years of winds from a high-altitude meteorological analysis system. The validation steps demonstrate that, given the geographical spread of the radar stations, the derived tidal modes are most closely representative of the migrating tides at 60∘ N. Some of the main characteristics of the observed migrating tides are that the semidiurnal tide shows sharp phase jumps around the equinoxes and peak amplitudes during early fall and that the terdiurnal tide shows a pronounced secondary amplitude peak around day of year (DOY) 265. In addition, the diurnal tide is found to show a bi-modal circular polarization phase relation between summer and winter.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhong, Wei, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou. "Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial-resolution distribution." Atmospheric Measurement Techniques 14, no. 5 (May 31, 2021): 3973–88. http://dx.doi.org/10.5194/amt-14-3973-2021.

Full text
Abstract:
Abstract. In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the mesosphere and lower thermosphere (MLT) region. Recently, there have been some notable experiments using such multistatic meteor radar systems. Good spatial resolution is vital for meteor radars because nearly all parameter inversion processes rely on the accurate location of the meteor trail specular point. It is timely then for a careful discussion focused on the error distribution of multistatic meteor radar systems. In this study, we discuss the measurement errors that affect the spatial resolution and obtain the spatial-resolution distribution in three-dimensional space for the first time. The spatial-resolution distribution can both help design a multistatic meteor radar system and improve the performance of existing radar systems. Moreover, the spatial-resolution distribution allows the accuracy of retrieved parameters such as the wind field to be determined.
APA, Harvard, Vancouver, ISO, and other styles
8

Rokade, M. V., R. Kondala Rao, S. S. Nikte, R. N. Ghodpage, P. T. Patil, A. K. Sharma, and S. Gurubaran. "Intraseasonal oscillation (ISO) in the MLT zonal wind over Kolhapur (16.8° N) and Tirunelveli (8.7° N)." Annales Geophysicae 30, no. 12 (December 5, 2012): 1623–31. http://dx.doi.org/10.5194/angeo-30-1623-2012.

Full text
Abstract:
Abstract. Simultaneous observations of the mean zonal winds at 88 km obtained by the medium-frequency (MF) radars at Kolhapur (16.8° N, 74.2° E) and Tirunelveli (8.7° N, 77.8° E) have been used to study the intraseasonal oscillation (ISO) in the MLT region. The influences of the intraseasonal variations in the lower tropospheric convective activity associated with the Madden-Julian oscillations on the latitudinal behavior of intraseasonal oscillations (ISO) of the zonal winds in the equatorial mesosphere and lower thermosphere (MLT) have been studied. The ISO activity in the lower tropospheric convective activity is examined by employing outgoing long wave radiation (OLR) as a proxy for deep convective activity occurring in the tropical lower atmosphere. The ISO activity in the zonal wind over TIR is more correlated with that in the convective activity compared to the ISO over KOL. The latitudinal and temporal variabilities of the ISO in MLT zonal winds are explained in terms of the intraseasonal variabilities in the convective activity.
APA, Harvard, Vancouver, ISO, and other styles
9

Makarevich, R. A., and P. L. Dyson. "Dual HF radar study of the subauroral polarization stream." Annales Geophysicae 25, no. 12 (January 2, 2007): 2579–91. http://dx.doi.org/10.5194/angeo-25-2579-2007.

Full text
Abstract:
Abstract. The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER) system often observe localized high-velocity F-region plasma flows (≥1500 m/s) in the midnight sector (20:00–02:00 MLT) at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm injection. The ion injection front can precede that of the electrons and hence substorm onset resulting in a negative response time of a few minutes.
APA, Harvard, Vancouver, ISO, and other styles
10

Chau, Jorge Luis, Juan Miguel Urco, Juha Pekka Vierinen, Ryan Andrew Volz, Matthias Clahsen, Nico Pfeffer, and Jörg Trautner. "Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere." Atmospheric Measurement Techniques 12, no. 4 (April 5, 2019): 2113–27. http://dx.doi.org/10.5194/amt-12-2113-2019.

Full text
Abstract:
Abstract. Typical specular meteor radars (SMRs) use one transmitting antenna and at least a five-antenna interferometric configuration on reception to study the mesosphere and lower thermosphere (MLT) region. The interferometric configuration allows the measurement of the angle-of-arrival (AOA) of the detected meteor echoes, which in turn is needed to derive atmospheric parameters (e.g., mean winds, momentum fluxes, temperatures, and neutral densities). Recently, we have shown that coherent MIMO configurations in atmospheric radars, i.e., multiple input (transmitters) and multiple output (receivers), with proper diversity in transmission can be used to enhance interferometric atmospheric and ionospheric observations. In this study we present novel SMR systems using multiple transmitters in interferometric configuration, each of them employing orthogonal pseudorandom coded transmitted sequences. After proper decoding, the angle of departure (AOD) of the detected meteor echoes with respect to the transmitter site are obtained at each receiving antenna. We present successful bistatic implementations of (1) five transmitters and one receiver using coded continuous wave (CW) (MISO-CW), and (2) five transmitters and five receivers using coded CW (MIMO-CW). The latter system allows simultaneous independent observations of the specular meteor trails with respect to the transmitter (AOD) and with respect to the receiver (AOA). The quality of the obtained results is evaluated in terms of the resulting mean winds, the number of detections and the daily diffusion trail vs. altitude behavior. We show that the proposed configurations are good alternatives to explore the MLT region. When combined with multi-static approaches, they can increase the number of meteor detections, thereby improving the quality of atmospheric estimates and allowing the measurement of new atmospheric parameters (e.g., horizontal divergence, vorticity), The use of multiple collocated transmitters for interferometric AOD determination makes building a multi-static radar network easier logistically, as only one receiver per receiving site antenna is sufficient.
APA, Harvard, Vancouver, ISO, and other styles
11

Kozlovsky, A., V. Safargaleev, N. Østgaard, T. Turunen, A. Koustov, J. Jussila, and A. Roldugin. "On the motion of dayside auroras caused by a solar wind pressure pulse." Annales Geophysicae 23, no. 2 (February 28, 2005): 509–21. http://dx.doi.org/10.5194/angeo-23-509-2005.

Full text
Abstract:
Abstract. Global ultraviolet auroral images from the IMAGE satellite were used to investigate the dynamics of the dayside auroral oval responding to a sudden impulse (SI) in the solar wind pressure. At the same time, the TV all-sky camera and the EISCAT radar on Svalbard (in the pre-noon sector) allowed for detailed investigation of the auroral forms and the ionospheric plasma flow. After the SI, new discrete auroral forms appeared in the poleward part of the auroral oval so that the middle of the dayside oval moved poleward from about 70° to about 73° of the AACGM latitude. This poleward shift first occurred in the 15 MLT sector, then similar shifts were observed in the MLT sectors located more westerly, and eventually the shift was seen in the 6 MLT sector. Thus, the auroral disturbance "propagated" westward (from 15 MLT to 6 MLT) at an apparent speed of the order of 7km/s. This motion of the middle of the auroral oval was caused by the redistribution of the luminosity within the oval and was not associated with the corresponding motion of the poleward boundary of the oval. The SI was followed by an increase in the northward plasma convection velocity. Individual auroral forms showed poleward progressions with velocities close to the velocity of the northward plasma convection. The observations indicate firstly a pressure disturbance propagation through the magnetosphere at a velocity of the order of 200km/s which is essentially slower than the velocity of the fast Alfvén (magnetosonic) wave, and secondly a potential (curl-free) electric field generation behind the front of the propagating disturbance, causing the motion of the auroras. We suggest a physical explanation for the slow propagation of the disturbance through the magnetosphere and a model for the electric field generation. Predictions of the model are supported by the global convection maps produced by the SuperDARN HF radars. Finally, the interchange instability and the eigenmode toroidal Alfvén oscillations are discussed as possible generation mechanisms for the dayside auroral forms launched by the SI.
APA, Harvard, Vancouver, ISO, and other styles
12

Jaen, Juliana, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall. "Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere." Annales Geophysicae 40, no. 1 (January 20, 2022): 23–35. http://dx.doi.org/10.5194/angeo-40-23-2022.

Full text
Abstract:
Abstract. Specular meteor radars (SMRs) and partial reflection radars (PRRs) have been observing mesospheric winds for more than a solar cycle over Germany (∼ 54∘ N) and northern Norway (∼ 69∘ N). This work investigates the mesospheric mean zonal wind and the zonal mean geostrophic zonal wind from the Microwave Limb Sounder (MLS) over these two regions between 2004 and 2020. Our study focuses on the summer when strong planetary waves are absent and the stratospheric and tropospheric conditions are relatively stable. We establish two definitions of the summer length according to the zonal wind reversals: (1) the mesosphere and lower-thermosphere summer length (MLT-SL) using SMR and PRR winds and (2) the mesosphere summer length (M-SL) using the PRR and MLS. Under both definitions, the summer begins around April and ends around middle September. The largest year-to-year variability is found in the summer beginning in both definitions, particularly at high latitudes, possibly due to the influence of the polar vortex. At high latitudes, the year 2004 has a longer summer length compared to the mean value for MLT-SL as well as 2012 for both definitions. The M-SL exhibits an increasing trend over the years, while MLT-SL does not have a well-defined trend. We explore a possible influence of solar activity as well as large-scale atmospheric influences (e.g., quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), major sudden stratospheric warming events). We complement our work with an extended time series of 31 years at middle latitudes using only PRR winds. In this case, the summer length shows a breakpoint, suggesting a non-uniform trend, and periods similar to those known for ENSO and QBO.
APA, Harvard, Vancouver, ISO, and other styles
13

Pitkänen, T., A. T. Aikio, A. Kozlovsky, and O. Amm. "Reconnection electric field estimates and dynamics of high-latitude boundaries during a substorm." Annales Geophysicae 27, no. 5 (May 12, 2009): 2157–71. http://dx.doi.org/10.5194/angeo-27-2157-2009.

Full text
Abstract:
Abstract. The dynamics of the polar cap and the auroral oval are examined in the evening sector during a substorm period on 25 November 2000 by using measurements of the EISCAT incoherent scatter radars, the north-south chain of the MIRACLE magnetometer network, and the Polar UV Imager. The location of the polar cap boundary (PCB) is estimated from electron temperature measurements by the mainland low-elevation EISCAT VHF radar and the 42 m antenna of the EISCAT Svalbard radar. A comparison to the poleward auroral emission (PAE) boundary by the Polar UV Imager shows that in this event the PAE boundary is typically located 0.7° of magnetic latitude poleward of the PCB by EISCAT. The convection reversal boundary (CRB) is determined from the 2-D plasma drift velocity extracted from the dual-beam VHF data. The CRB is located 0.5–1° equatorward of the PCB indicating the existence of viscous-driven antisunward convection on closed field lines. East-west equivalent electrojets are calculated from the MIRACLE magnetometer data by the 1-D upward continuation method. In the substorm growth phase, electrojets together with the polar cap boundary move gradually equatorwards. During the substorm expansion phase, the Harang discontinuity (HD) region expands to the MLT sector of EISCAT. In the recovery phase the PCB follows the poleward edge of the westward electrojet. The local ionospheric reconnection electric field is calculated by using the measured plasma velocities in the vicinity of the polar cap boundary. During the substorm growth phase, values between 0 and 10 mV/m are found. During the late expansion and recovery phase, the reconnection electric field has temporal variations with periods of 7–27 min and values from 0 to 40 mV/m. It is shown quantitatively, for the first time to our knowledge, that intensifications in the local reconnection electric field correlate with appearance of auroral poleward boundary intensifications (PBIs) in the same MLT sector. The results suggest that PBIs (typically 1.5 h MLT wide) are a consequence of temporarily enhanced longitudinally localized magnetic flux closure in the magnetotail.
APA, Harvard, Vancouver, ISO, and other styles
14

Clark, R. R., M. D. Burrage, S. J. Franke, A. H. Manson, C. E. Meek, N. J. Mitchell, and H. G. Muller. "Observations of 7-d planetary waves with MLT radars and the UARS-HRDI instrument." Journal of Atmospheric and Solar-Terrestrial Physics 64, no. 8-11 (May 2002): 1217–28. http://dx.doi.org/10.1016/s1364-6826(02)00070-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Shand, B. A., T. K. Yeoman, R. V. Lewis, R. A. Greenwald, and M. R. Hairston. "Interhemispheric contrasts in the ionospheric convection response to changes in the interplanetary magnetic field and substorm activity: a case-study." Annales Geophysicae 16, no. 7 (July 31, 1998): 764–74. http://dx.doi.org/10.1007/s00585-998-0764-8.

Full text
Abstract:
Abstract. Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between ~1600 and ~2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.Key words. Magnetospheric physics · Auroral phenomena · Magnetosphere-ionosphere interactions · Storms and substorms
APA, Harvard, Vancouver, ISO, and other styles
16

Parkinson, M. L. "Complexity in the scaling of velocity fluctuations in the high-latitude F-region ionosphere." Annales Geophysicae 26, no. 9 (September 12, 2008): 2657–72. http://dx.doi.org/10.5194/angeo-26-2657-2008.

Full text
Abstract:
Abstract. The temporal scaling properties of F-region velocity fluctuations, δvlos, were characterised over 17 octaves of temporal scale from τ=1 s to <1 day using a new data base of 1-s time resolution SuperDARN radar measurements. After quality control, 2.9 (1.9) million fluctuations were recorded during 31.5 (40.4) days of discretionary mode soundings using the Tasmanian (New Zealand) radars. If the fluctuations were statistically self-similar, the probability density functions (PDFs) of δvlos would collapse onto the same PDF using the scaling Ps (δvs, τ)=ταP (δvlos, τ) and δvs=δvlosτ−α where α is the scaling exponent. The variations in scaling exponents α and multi-fractal behaviour were estimated using peak scaling and generalised structure function (GSF) analyses, and a new method based upon minimising the differences between re-scaled probability density functions (PDFs). The efficiency of this method enabled calculation of "α spectra", the temporal spectra of scaling exponents from τ=1 s to ~2048 s. The large number of samples enabled calculation of α spectra for data separated into 2-h bins of MLT as well as two main physical regimes: Population A echoes with Doppler spectral width <75 m s−1 concentrated on closed field lines, and Population B echoes with spectral width >150 m s−1 concentrated on open field lines. For all data there was a scaling break at τ~10 s and the similarity of the fluctuations beneath this scale may be related to the large spatial averaging (~100 km×45 km) employed by SuperDARN radars. For Tasmania Population B, the velocity fluctuations exhibited approximately mono fractal power law scaling between τ~8 s and 2048 s (34 min), and probably up to several hours. The scaling exponents were generally less than that expected for basic MHD turbulence (α=0.25), except close to magnetic dusk where they peaked towards the basic MHD value. For Population A, the scaling exponents were larger than for Population B, having values generally in the range expected for basic MHD and Kolmogorov turbulence (α=0.25–0.33). The α spectra exhibited complicated variations with MLT and τ which must be related to different physical processes exerting more or less influence.
APA, Harvard, Vancouver, ISO, and other styles
17

Makarevitch, R. A., and F. Honary. "Correlation between cosmic noise absorption and VHF coherent echo intensity." Annales Geophysicae 23, no. 5 (July 27, 2005): 1543–53. http://dx.doi.org/10.5194/angeo-23-1543-2005.

Full text
Abstract:
Abstract. We present examples and statistical analysis of the events with statistically significant correlation between the cosmic noise absorption (CNA) and the signal-to-noise ratio (SNR) of the VHF coherent echo intensity in the area monitored simultaneously by an imaging riometer and two oblique-sounding coherent VHF radars in Northern Scandinavia. By only considering the observations from the narrow riometer beams comparable (in terms of the intersection with the ionosphere) with the VHF radar cells, we identify ~200 one-hour high correlation periods (HCPs) for 2 years near the solar cycle maximum, 2000–2001. The HCP occurrence is maximized in the afternoon (12:00–17:00 UT, MLT≅UT+3), with the secondary peak near the midnight (21:00–02:00 UT). Relative to the VHF echo occurrence, HCPs occur more frequently from 11:00 to 20:00 UT. The diurnal variation of HCP occurrence is similar to that of the 1-h intervals with the lowest mean absorption A<0.25dB. The HCPs are observed more frequently during the winter months, which, combined with the fact that VHF echoes observed during HCPs exhibit features typical for field-aligned E-region irregularities, makes their association with the polar mesospheric echoes (for which some positive CNA/SNR correlation has been reported in the past) very unlikely. Instead, we attribute the high positive CNA/SNR correlation to the synchronous, to a first approximation, variation of the particle fluxes for two different but close sets of energies. By considering the dependence of the CNA/SNR correlation coefficients for both VHF radars (CA1 and CA2) upon the correlation between SNRs for two radars (C12), we show that both coefficients, CA1 and CA2, and the agreement between them decrease drastically with a C12 decrease, which we interpreted through the progressively increasing role of the spatial inhomogeneity of the processes leading to the enhanced CNA and SNR. In this situation, a similarity between the radio signal collection areas should become important, and we demonstrate that the HCP occurrence and mean correlation coefficient decrease as the riometer beams and radar cells become less comparable in terms of mutual orientation and closeness between the points of maximum sensitivity. Keywords. Ionosphere (Auroral ionosphere; Particle precipitation; Instruments and techniques)
APA, Harvard, Vancouver, ISO, and other styles
18

Goldberg, R. A., D. C. Fritts, F. J. Schmidlin, B. P. Williams, C. L. Croskey, J. D. Mitchell, M. Friedrich, J. M. Russell, U. Blum, and K. H. Fricke. "The MaCWAVE program to study gravity wave influences on the polar mesosphere." Annales Geophysicae 24, no. 4 (July 3, 2006): 1159–73. http://dx.doi.org/10.5194/angeo-24-1159-2006.

Full text
Abstract:
Abstract. MaCWAVE (Mountain and Convective Waves Ascending VErtically) was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT). The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N) in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N) during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure) rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE) and noctilucent clouds (NLC). This was suggested to be due to enhanced planetary wave activity in the Southern Hemisphere and a surprising degree of inter-hemispheric coupling. The winter program was designed to study the upward propagation and penetration of mountain waves from northern Scandinavia into the MLT at a site favored for such penetration. As the major response was expected to be downstream (east) of Norway, these motions were measured with similar rocket sequences to those used in the summer campaign, but this time at Esrange. However, a major polar stratospheric warming just prior to the rocket launch window induced small or reversed stratospheric zonal winds, which prevented mountain wave penetration into the mesosphere. Instead, mountain waves encountered critical levels at lower altitudes and the observed wave structure in the mesosphere originated from other sources. For example, a large-amplitude semidiurnal tide was observed in the mesosphere on 28 and 29 January, and appears to have contributed to significant instability and small-scale structures at higher altitudes. The resulting energy deposition was found to be competitive with summertime values. Hence, our MaCWAVE measurements as a whole are the first to characterize influences in the MLT region of planetary wave activity and related stratospheric warmings during both winter and summer.
APA, Harvard, Vancouver, ISO, and other styles
19

Sharma, A. K., M. V. Rokade, R. Kondala Rao, S. Gurubaran, and P. T. Patil. "Comparative study of MLT mean winds using MF radars located at 16.8°N and 8.7°N." Journal of Earth System Science 119, no. 4 (August 2010): 461–70. http://dx.doi.org/10.1007/s12040-010-0031-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Safargaleev, V., A. Kozlovsky, T. Sergienko, T. K. Yeoman, M. Uspensky, D. M. Wright, H. Nilsson, T. Turunen, and A. Kotikov. "Optical, radar, and magnetic observations of magnetosheath plasma capture during a positive IMF <I>B<sub>z</sub></I> impulse." Annales Geophysicae 26, no. 3 (March 26, 2008): 517–31. http://dx.doi.org/10.5194/angeo-26-517-2008.

Full text
Abstract:
Abstract. We present a multi-instrument study of the ionospheric response to a northward turning of the IMF. The observations were made in the near-noon (11:00 MLT) sector on Svalbard (at 75° MLAT). The data set includes auroral observations, ionospheric flows obtained from the EISCAT and CUTLASS radars, the spectral width of the HF radar backscatter, particle precipitation and plasma flow data from the DMSP F13 satellite, and Pc1 frequency band pulsations observed by induction magnetometers. Careful collocation of all the observations has been made with the HF radar backscatter located by a ray-tracing procedure utilizing the elevation angle of arrival of the signals and an ionospheric plasma density profile. Prior to IMF turning northward, three auroral arcs were observed at the poleward boundary of the closed llbl, inside the llbl, and in the equatorward part of the llbl, respectively. The northward IMF turning was accompanied by enhanced HF radar returns with a broad Doppler spectrum collocated with the arcs. The auroral arcs shifted poleward whereas the backscatter region moved in the opposite direction, which is consistent, respectively, with reconnection beyond the cusp and the capturing of magnetosheath plasma during northward IMF. Locally, magnetic noise enhancement in the Pc1 frequency band occurred simultaneously with the anomalous radar backscatter, and the absence of such signals at more remote magnetic observatories indicates a local generation of the Pc1 turbulence, which is collocated with the radar backscatter. Finally, we discuss possible interpretation errors which may be caused by limited observational data.
APA, Harvard, Vancouver, ISO, and other styles
21

Stray, N. H., Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins. "Observations of PW activity in the MLT during SSW events using a chain of SuperDARN radars and SD-WACCM." Atmospheric Chemistry and Physics Discussions 15, no. 1 (January 7, 2015): 393–413. http://dx.doi.org/10.5194/acpd-15-393-2015.

Full text
Abstract:
Abstract. This study investigates the effect of Stratospheric Sudden Warmings (SSWs) on Planetary Wave (PW) activity in the Mesosphere-Lower Thermosphere (MLT). PW activity near 95 km is derived from meteor wind data using a chain of 8 SuperDARN radars at high northern latitudes that span longitudes from 150° W to 25° E and latitudes from 51 to 66° N. Zonal wave number 1 and 2 components were extracted from the meridional wind for the years 2000–2008. The observed wintertime PW activity shows common features associated with the stratospheric wind reversals and the accompanying stratospheric warming events. Onset dates for seven SSW events accompanied by an elevated stratopause (ES) were identified during this time period using the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). For the seven events, a significant enhancement in wave number 1 and 2 PW amplitudes near 95 km was found to occur after the wind reversed at 50 km, with amplitudes maximizing approximately 5 days after the onset of the wind reversal. This PW enhancement in the MLT after the event was confirmed using SD-WACCM. When all cases of polar cap wind reversals at 50 km were considered, a significant, albeit moderate, correlation of 0.4 was found between PW amplitudes near 95 km and westward polar-cap stratospheric winds at 50 km, with the maximum correlation occurring ~3 days after the maximum westward wind. These results indicate that the enhancement of PW amplitudes near 95 km are a common feature of SSWs irrespective of the strength of the wind reversal.
APA, Harvard, Vancouver, ISO, and other styles
22

Wild, J. A., T. K. Yeoman, P. Eglitis, and H. J. Opgenoorth. "Multi-instrument observations of the electric and magnetic field structure of omega bands." Annales Geophysicae 18, no. 1 (January 31, 2000): 99–110. http://dx.doi.org/10.1007/s00585-000-0099-6.

Full text
Abstract:
Abstract. High time resolution data from the CUTLASS Finland radar during the interval 01:30-03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending ~5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes ~500 km and an eastward propagation velocity ~0.75 km s-1. They occur in the morning sector (~05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed..Key words. Ionosphere (auroral ionosphere; electric fields and currents) · Magnetospheric physics (magnetosphere-ionosphere interactions)
APA, Harvard, Vancouver, ISO, and other styles
23

Milan, S. E., M. Lester, R. A. Greenwald, and G. Sofko. "The ionospheric signature of transient dayside reconnection and the associated pulsed convection return flow." Annales Geophysicae 17, no. 9 (September 30, 1999): 1166–71. http://dx.doi.org/10.1007/s00585-999-1166-2.

Full text
Abstract:
Abstract. Three SuperDARN coherent HF radars are employed to investigate the excitation of convection in the dayside high-latitude ionosphere in response to transient reconnection occurring in the cusp region. This study demonstrates the existence of transient antisunward-propagating backscatter features at the expected location of the ionospheric footprint of the cusp region, which have a repetition rate near 10 min. These are interpreted as the ionospheric signature of flux transfer events. Moreover, transient sunward-propagating regions of backscatter are observed in the convection return flow regions of both the pre- and post-noon sectors. These patches are observed to propagate towards the noon sector from at least as far around the auroral zone as 07 MLT in the pre-noon sector and 17 MLT in the post-noon sector, travelling with a velocity of approximately 1.5 to 2 km s-1. These return flow patches have a repetition rate similar to that of the transient features observed at local noon. While providing supporting evidence for the impulsive nature of convection flow, the observation of sunward-propagating features in the return flow region is not consistent with current conceptual models of the excitation of convection.Key words. Ionosphere (plasma convection) · Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetosphere-ionosphere interactions)
APA, Harvard, Vancouver, ISO, and other styles
24

Kishore Kumar, G., and W. K. Hocking. "Climatology of northern polar latitude MLT dynamics: mean winds and tides." Annales Geophysicae 28, no. 10 (October 7, 2010): 1859–76. http://dx.doi.org/10.5194/angeo-28-1859-2010.

Full text
Abstract:
Abstract. Mean winds and tides in the northern polar Mesosphere and Lower Thermosphere (MLT) have been studied using meteor radars located at Resolute Bay (75° N, 95° W) and Yellowknife (62.5° N, 114.3° W). The measurements for Resolute Bay span almost 12 years from July 1997 to February 2009 and the Yellowknife data cover 7 years from June 2002 to October 2008. The analysis reveals similar wind flow over both sites with a difference in magnitude. The summer zonal flow is westward at lower heights, eastward at upper heights and the winter zonal flow is eastward at all heights. The winter meridional flow is poleward and sometimes weakly equatorward, while non winter months show equatorward flow, with a strong equatorward jet during mid-summer months. The zonal and meridional winds show strong interannual variation with a dominant annual variation as well as significant latitudinal variation. Year to year variability in both zonal and meridional winds exists, with a possible solar cycle dependence. The diurnal, semidiurnal and terdiurnal tides also show large interannual variability and latitudinal variation. The diurnal amplitudes are dominated by an annual variation. The climatological monthly mean winds are compared with CIRA 86, GEWM and HWM07 and the climatological monthly mean amplitudes and phases of diurnal and semidiurnal tides are compared with GSWM00 predictions. The GEWM shows better agreement with observations than the CIRA 86 and HWM07. The GSWM00 model predictions need to be modified above 90 km. The agreements and disagreements between observations and models are discussed.
APA, Harvard, Vancouver, ISO, and other styles
25

Senior, C., J. C. Cerisier, F. Rich, M. Lester, and G. K. Parks. "Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations." Annales Geophysicae 20, no. 6 (June 30, 2002): 771–79. http://dx.doi.org/10.5194/angeo-20-771-2002.

Full text
Abstract:
Abstract. High-time resolution data from the two Iceland SuperDARN HF radars show very strong nightside convection activity during a prolonged period of low geomagnetic activity and northward interplanetary magnetic field (IMF). Flows bursts with velocities ranging from 0.8 to 1.7 km/s are observed to propagate in the sunward direction with phase velocities up to 1.5 km/s. These bursts occur over several hours of MLT in the 20:00–01:00 MLT sector, in the evening-side sunward convection. Data from a simultaneous DMSP pass and POLAR UVI images show a very contracted polar cap and extended regions of auroral particle precipitation from the magnetospheric boundaries. A DMSP pass over the Iceland-West field-of-view while one of these sporadic bursts of enhanced flow is observed, indicates that the flow bursts appear within the plasma sheet and at its outward edge, which excludes Kelvin-Helmholtz instabilities at the magnetopause boundary as the generation mechanism. In the nightside region, the precipitation is more spot-like and the convection organizes itself as clockwise U-shaped structures. We interpret these flow bursts as the convective transport following plasma injection events from the tail into the night-side ionosphere. We show that during this period, where the IMF clock angle is around 70°, the dayside magnetosphere is not completely closed.Key words. Ionosphere (Auroral ionosphere; Ionospheremagnetosphere interactions; Particle precipitation)
APA, Harvard, Vancouver, ISO, and other styles
26

Sandholt, P. E., J. Moen, C. J. Farrugia, S. W. H. Cowley, M. Lester, S. E. Milan, C. Valladares, W. F. Denig, and S. Eriksson. "Multi-site observations of the association between aurora and plasma convection in the cusp/polar cap during a southeastward(<i>B<sub>y</sub></i> <u>~</u> |<i>B<sub>z</sub></i>|) IMF orientation." Annales Geophysicae 21, no. 2 (February 28, 2003): 539–58. http://dx.doi.org/10.5194/angeo-21-539-2003.

Full text
Abstract:
Abstract. In a case study we demonstrate the spatiotemporal structure of aurora and plasma convection in the cusp/polar cap when the interplanetary magnetic field (IMF) Bz < 0 and By ~ | Bz | (clock angle in GSM Y - Z plane: ~ 135°). This IMF orientation elicited a response different from that corresponding to strongly northward and southward IMF. Our study of this "intermediate state" is based on a combination of ground observations of optical auroral emissions and ionospheric plasma convection. Utilizing all-sky cameras at NyAlesund, Svalbard and Heiss Island (Russian arctic), we are able to monitor the high-latitude auroral activity within the ~10:00–15:00 MLT sector. Information on plasma convection is obtained from the SuperDARN radars, with emphasis placed on line of sight observations from the radar situated in Hankasalmi, Finland (Cutlass). A central feature of the auroral observations in the cusp/polar cap region is a ~ 30-min long sequence of four brightening events, some of which consists of latitudinally and longitudinally separated forms, which are found to be associated with pulsed ionospheric flows in merging and lobe convection cells. The auroral/convection events may be separated into different forms/cells and phases, reflecting a spatiotem-poral evolution of the reconnection process on the dayside magnetopause. The initial phase consists of a brightening in the postnoon sector (~ 12:00–14:00 MLT) at ~ 73° MLAT, accompanied by a pulse of enhanced westward convection in the postnoon merging cell. Thereafter, the event evolution comprises two phenomena which occur almost simultaneously: (1) westward expansion of the auroral brightening (equatorward boundary intensification) across noon, into the ~ 10:00–12:00 MLT sector, where the plasma convection subsequently turns almost due north, in the convection throat, and where classical poleward moving auroral forms (PMAFs) are observed; and (2) auroral brightening at slightly higher latitudes (~ 75° MLAT) in the postnoon lobe cell, with expansion towards noon, giving rise to a clear cusp bifurcation. The fading phase of PMAFs is accompanied by a "patch" of enhanced (~ 1 km/s) poleward-directed merging cell convection at high latitudes (75–82° MLAT), e.g. more than 500 km poleward of the cusp equatorward boundary. The major aurora/convection events are recurring at ~ 5–10 min intervals. Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection)
APA, Harvard, Vancouver, ISO, and other styles
27

Stober, G., and J. L. Chau. "A multistatic and multifrequency novel approach for specular meteor radars to improve wind measurements in the MLT region." Radio Science 50, no. 5 (May 2015): 431–42. http://dx.doi.org/10.1002/2014rs005591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

McWilliams, K. A., T. K. Yeoman, J. B. Sigwarth, L. A. Frank, and M. Brittnacher. "The dayside ultraviolet aurora and convection responses to a southward turning of the interplanetary magnetic field." Annales Geophysicae 19, no. 7 (July 31, 2001): 707–21. http://dx.doi.org/10.5194/angeo-19-707-2001.

Full text
Abstract:
Abstract. We examine the large-scale ultraviolet aurora and convection responses to a series of flux transfer events that immediately followed a sharp and isolated southward turning of the IMF. During the interval of interest, SuperDARN was monitoring the plasma convection in the dayside northern ionosphere, while the VIS Earth Camera and the Far Ul-traviolet Imager (UVI) were monitoring the northern hemisphere’s ultraviolet aurora. Reconnection signatures were seen in the SuperDARN HF radar data in the postnoon sector following a sharp southward turning of the IMF. The presence of flux transfer events is supported by measurements of a classic dispersed ion signature in the low-altitude cusp from the DMSP spacecraft. Subsequent to the onset of reconnection, the postnoon convection and ultraviolet aurora expanded in concert, reaching 18 MLT in half an hour. The auroral oval was found to move equatorward at the convection speed in the 16–18 MLT sector, implying that it was related directly to an adiaroic magnetospheric boundary. In the present study, we have estimated the field-aligned current response to magnetic reconnection in terms of the vorticity of the ionospheric plasma convection velocity. The convection velocities were obtained using two methods: (a) direct reconstruction of the full vector velocities from bistatic measurements of the convection by the SuperDARN HF radars in a relatively small region of the auroral zone, and (b) from global-scale spherical harmonic fits to the SuperDARN velocities deduced from the map potential model. Regions of high vorticity, which were predicted to be an estimate of a component of the total field-aligned current, agree extremely well with the images of the dayside UV aurora, indicating that, in this case, the plasma vorticity is an excellent estimator of the morphology of dayside field-aligned currents (FACs). The morphology of the aurora and ionospheric electric field in the postnoon sector supports the existence of a dayside current wedge induced in response to dayside reconnection.Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions; solar wind magne-tosphere interactions)
APA, Harvard, Vancouver, ISO, and other styles
29

Wilhelm, Sven, Gunter Stober, and Jorge L. Chau. "A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69 ° N." Annales Geophysicae 35, no. 4 (July 31, 2017): 893–906. http://dx.doi.org/10.5194/angeo-35-893-2017.

Full text
Abstract:
Abstract. The Andenes Meteor Radar (MR) and the Saura Medium Frequency (MF) Radar are located in northern Norway (69° N, 16° E) and operate continuously to provide wind measurements of the mesosphere and lower thermosphere (MLT) region. We compare the two systems to find potential biases between the radars and combine the data from both systems to enhance altitudinal coverage between 60 and 110 km. The systems have altitudinal overlap between 78 and 100 km at which we compare winds and tides on the basis of hourly winds with 2 km altitude bins. Our results indicate reasonable agreement for the zonal and meridional wind components between 78 and 92 km. An exception to this is the altitude range below 84 km during the summer, at which the correlation decreases. We also compare semidiurnal and diurnal tides according to their amplitudes and phases with good agreement below 90 km for the diurnal and below 96 km for the semidiurnal tides. Based on these findings we have taken the MR data as a reference. By comparing the MF and MR winds within the overlapping region, we have empirically estimated correction factors to be applied to the MF winds. Existing gaps in that data set will be filled with weighted MF data. This weighting is done due to underestimated wind values of the MF compared to the MR, and the resulting correction factors fit to a polynomial function of second degree within the overlapping area. We are therefore able to construct a consistent and homogenous wind from approximately 60 to 110 km.
APA, Harvard, Vancouver, ISO, and other styles
30

Manson, A. H., C. Meek, M. Hagan, J. Koshyk, S. Franke, D. Fritts, C. Hall, et al. "Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2–70° N, modelled tides (GSWM, CMAM)." Annales Geophysicae 20, no. 5 (May 31, 2002): 661–77. http://dx.doi.org/10.5194/angeo-20-661-2002.

Full text
Abstract:
Abstract. In an earlier paper (Manson et al., 1999a) tidal data (1990–1997) from six Medium Frequency Radars (MFR) were compared with the Global Scale Wave Model (GSWM, original 1995 version). The radars are located between the equator and high northern latitudes: Christmas Island (2° N), Hawaii (22° N), Urbana (40° N), London (43° N), Saskatoon (52° N) and Tromsø (70° N). Common harmonic analysis was applied, to ensure consistency of amplitudes and phases in the 75–95 km height range. For the diurnal tide, seasonal agreements between observations and model were excellent while for the semi-diurnal tide the seasonal transitions between clear solstitial states were less well captured by the model. Here the data set is increased by the addition of two locations in the Pacific-North American sector: Yamagawa 31° N, and Wakkanai 45° N. The GSWM model has undergone two additional developments (1998, 2000) to include an improved gravity wave (GW) stress parameterization, background winds from UARS systems and monthly tidal forcing for better characterization of seasonal change. The other model, the Canadian Middle Atmosphere Model (CMAM) which is a General Circulation Model, provides internally generated forcing (due to ozone and water vapour) for the tides. The two GSWM versions show distinct differences, with the 2000 version being either closer to, or further away from, the observations than the original 1995 version. CMAM provides results dependent upon the GW parameterization scheme inserted, but one of the schemes provides very useful tides, especially for the semi-diurnal component.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)
APA, Harvard, Vancouver, ISO, and other styles
31

Lockwood, M., J. A. Davies, J. Moen, A. P. van Eyken, K. Oksavik, I. W. McCrea, and M. Lester. "Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate." Annales Geophysicae 23, no. 11 (December 21, 2005): 3513–32. http://dx.doi.org/10.5194/angeo-23-3513-2005.

Full text
Abstract:
Abstract. Using data from the EISCAT (European Incoherent Scatter) VHF and CUTLASS (Co-operative UK Twin-Located Auroral Sounding System) HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005). It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002), were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00-12:00 MLT) did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1) concentration enhancement within the patches by cusp/cleft precipitation; (2) plasma depletion in the minima between the patches by fast plasma flows; and (3) intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3) is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2) also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000).
APA, Harvard, Vancouver, ISO, and other styles
32

Stray, N. H., Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins. "Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events." Atmospheric Chemistry and Physics 15, no. 9 (May 4, 2015): 4997–5005. http://dx.doi.org/10.5194/acp-15-4997-2015.

Full text
Abstract:
Abstract. This study investigates the effect of stratospheric sudden warmings (SSWs) on planetary wave (PW) activity in the mesosphere–lower thermosphere (MLT). PW activity near 95 km is derived from meteor wind data using a chain of eight SuperDARN radars at high northern latitudes that span longitudes from 150° W to 25° E and latitudes from 51 to 66° N. Zonal wave number 1 and 2 components were extracted from the meridional wind for the years 2000–2008. The observed wintertime PW activity shows common features associated with the stratospheric wind reversals and the accompanying stratospheric warming events. Onset dates for seven SSW events accompanied by an elevated stratopause (ES) were identified during this time period using the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). For the seven events, a significant enhancement in wave number 1 and 2 PW amplitudes near 95 km was found to occur after the wind reversed at 50 km, with amplitudes maximizing approximately 5 days after the onset of the wind reversal. This PW enhancement in the MLT after the event was confirmed using SD-WACCM. When all cases of polar cap wind reversals at 50 km were considered, a significant, albeit moderate, correlation of 0.4 was found between PW amplitudes near 95 km and westward polar-cap stratospheric winds at 50 km, with the maximum correlation occurring ∼ 3 days after the maximum westward wind. These results indicate that the enhancement of PW amplitudes near 95 km is a common feature of SSWs irrespective of the strength of the wind reversal.
APA, Harvard, Vancouver, ISO, and other styles
33

Koshin, Dai, Kaoru Sato, Masashi Kohma, and Shingo Watanabe. "An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere." Geoscientific Model Development 15, no. 5 (March 17, 2022): 2293–307. http://dx.doi.org/10.5194/gmd-15-2293-2022.

Full text
Abstract:
Abstract. The four-dimensional local ensemble transform Kalman filter (4D-LETKF) data assimilation system for the whole neutral atmosphere is updated to better represent disturbances with wave periods shorter than 1 d in the mesosphere and lower thermosphere (MLT) region. First, incremental analysis update (IAU) filtering is introduced to reduce the generation of spurious waves arising from the insertion of the analysis updates. The IAU is better than other filtering methods, and also is commonly used for middle atmospheric data assimilation. Second, the order of horizontal diffusion in the forecast model is changed to reproduce the more realistic tidal amplitudes that were observed by satellites. Third, the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Special Sensor Microwave Imager/Sounder (SSMIS) observations in the stratosphere and mesosphere also are assimilated. The performance of the resultant analyses is evaluated by comparing them with the mesospheric winds from meteor radars, which are not assimilated. The representation of assimilation products is greatly improved not only for the zonal mean field but also for short-period and/or horizontally small-scale disturbances.
APA, Harvard, Vancouver, ISO, and other styles
34

Merzlyakov, E. G., D. J. Murphy, R. A. Vincent, and Yu I. Portnyagin. "Long-term tendencies in the MLT prevailing winds and tides over Antarctica as observed by radars at Molodezhnaya, Mawson and Davis." Journal of Atmospheric and Solar-Terrestrial Physics 71, no. 1 (January 2009): 21–32. http://dx.doi.org/10.1016/j.jastp.2008.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lockwood, M., H. Opgenoorth, A. P. van Eyken, A. Fazakerley, J. M. Bosqued, W. Denig, J. A. Wild, et al. "Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe." Annales Geophysicae 19, no. 10/12 (September 30, 2001): 1589–612. http://dx.doi.org/10.5194/angeo-19-1589-2001.

Full text
Abstract:
Abstract. During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV) and the topside ionospheric enhancements seen by the ESR (at 400–700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.Key words. Magnetospheric physics (polar cap phenomena; solar wind – magnetosphere interactions; magnetosphere – ionosphere interactions)
APA, Harvard, Vancouver, ISO, and other styles
36

Ford, E. A. K., A. L. Aruliah, E. M. Griffin, and I. McWhirter. "Thermospheric gravity waves in Fabry-Perot Interferometer measurements of the 630.0nm OI line." Annales Geophysicae 24, no. 2 (March 23, 2006): 555–66. http://dx.doi.org/10.5194/angeo-24-555-2006.

Full text
Abstract:
Abstract. Gravity waves are an important feature of mesosphere - lower thermosphere (MLT) dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. It is known that some gravity waves may propagate through the mesopause and reach greater altitudes before eventually "breaking" and depositing energy. The generation, propagation, and breaking of upper thermospheric gravity waves have not been studied directly often. However, their ionospheric counterparts, travelling ionospheric disturbances (TIDs), have been extensively studied in, for example, radar data. At high latitudes, it is believed localised auroral activity may generate gravity waves in-situ. Increases in sensor efficiency of Fabry-Perot Interferometers (FPIs) located in northern Scandinavia have provided higher time resolution measurements of the auroral oval and polar cap atomic oxygen red line emission at 630.0 nm. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with periods ranging from a few tens of minutes to several hours. Oscillations are seen in the intensity of the line as well as the temperatures and line of sight winds. Instruments are located in Sodankylä, Finland; Kiruna, Sweden; Skibotn, Norway, and Svalbard in the Arctic Ocean. A case study is presented here, where a wave of 1.8 h period has a phase speed of 250 ms-1 with a propagation angle of 302°, and a horizontal wavelength of 1600 km. All the FPIs are co-located with EISCAT radars, as well as being supplemented by a range of other instrumentation. This allows the waves found in the FPI data to be put in context with the ionosphere and atmosphere system. Consequently, the source region of the gravity waves can be determined.
APA, Harvard, Vancouver, ISO, and other styles
37

Korotyshkin, Dmitriy, Eugeny Merzlyakov, Christoph Jacobi, Friederike Lilienthal, and Qian Wu. "Longitudinal MLT wind structure at higher mid-latitudes as seen by meteor radars at central and Eastern Europe (13°E/49°E)." Advances in Space Research 63, no. 10 (May 2019): 3154–66. http://dx.doi.org/10.1016/j.asr.2019.01.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kleinknecht, Nora H., Patrick J. Espy, and Robert E. Hibbins. "The climatology of zonal wave numbers 1 and 2 planetary wave structure in the MLT using a chain of Northern Hemisphere SuperDARN radars." Journal of Geophysical Research: Atmospheres 119, no. 3 (February 13, 2014): 1292–307. http://dx.doi.org/10.1002/2013jd019850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jacobi, Christoph, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober. "Influence of geomagnetic disturbances on mean winds and tides in the mesosphere/lower thermosphere at midlatitudes." Advances in Radio Science 19 (December 17, 2021): 185–93. http://dx.doi.org/10.5194/ars-19-185-2021.

Full text
Abstract:
Abstract. Observations of upper mesosphere/lower thermosphere (MLT) wind have been performed at Collm (51.3∘ N, 13.0∘ E) and Kazan (56∘ N, 49∘ E), using two SKiYMET all-sky meteor radars with similar configuration. Daily vertical profiles of mean winds and tidal amplitudes have been constructed from hourly horizontal winds. We analyse the response of mean winds and tidal amplitudes to geomagnetic disturbances. To this end, we compare winds and amplitudes for very quiet (Ap ≤ 5) and unsettled/disturbed (Ap ≥ 20) geomagnetic conditions. Zonal winds in both the mesosphere and lower thermosphere are weaker during disturbed conditions for both summer and winter. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. Tendencies for geomagnetic effects on mean winds over Collm and Kazan qualitatively agree during most of the year. For the diurnal tide, amplitudes in summer are smaller in the mesosphere and greater in the lower thermosphere, but no clear tendency is seen for winter. Semidiurnal tidal amplitudes increase during geomagnetic active days in summer and winter. Terdiurnal amplitudes are slightly reduced in the mesosphere during disturbed days, but no clear effect is visible for the lower thermosphere. Overall, while there is a noticeable effect of geomagnetic variability on the mean wind, the effect on tidal amplitudes, except for the semidiurnal tide, is relatively small and partly different over Collm and Kazan.
APA, Harvard, Vancouver, ISO, and other styles
40

Borälv, E., P. Eglitis, H. J. Opgenoorth, E. Donovan, G. Reeves, and P. Stauning. "The dawn and dusk electrojet response to substorm onset." Annales Geophysicae 18, no. 9 (September 30, 2000): 1097–107. http://dx.doi.org/10.1007/s00585-000-1097-4.

Full text
Abstract:
Abstract. We have investigated the time delay between substorm onset and related reactions in the dawn and dusk ionospheric electrojets, clearly separated from the nightside located substorm current wedge by several hours in MLT. We looked for substorm onsets occurring over Greenland, where the onset was identified by a LANL satellite and DMI magnetometers located on Greenland. With this setup the MARIA magnetometer network was located at dusk, monitoring the eastward electrojet, and the IMAGE chain at dawn, for the westward jet. In the first few minutes following substorm onset, sudden enhancements of the electrojets were identified by looking for rapid changes in magnetograms. These results show that the speed of information transfer between the region of onset and the dawn and dusk ionosphere is very high. A number of events where the reaction seemed to preceed the onset were explained by either unfavorable instrument locations, preventing proper onset timing, or by the inner magnetosphere's reaction to the Earthward fast flows from the near-Earth neutral line model. Case studies with ionospheric coherent (SuperDARN) and incoherent (EISCAT) radars have been performed to see whether a convection-induced electric field or enhanced conductivity is the main agent for the reactions in the electrojets. The results indicate an imposed electric field enhancement.Key words: Ionosphere (auroral ionosphere; electric fields and currents) - Magnetospheric physics (storms and substorms)
APA, Harvard, Vancouver, ISO, and other styles
41

Merzlyakov, E., D. Pancheva, N. Mitchell, J. M. Forbes, Yu I. Portnyagin, S. Palo, N. Makarov, and H. G. Muller. "High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000." Annales Geophysicae 22, no. 3 (March 19, 2004): 773–88. http://dx.doi.org/10.5194/angeo-22-773-2004.

Full text
Abstract:
Abstract. Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E), Esrange (68°N, 21°E), Castle Eaton (UK) (53°N, 2°W), and Obninsk (55°N, 37°E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205), we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher) zonal wave-number components increase (decrease) with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting mechanism for this decoupling is the Rossby wave instability (e.g. Baines, 1976). This result is consistent with the day-to-day wind variability during the observed QTDW events. An interesting feature of the final stage of the observed QTDW activity in summer 2000 is the occurrence of strong 4–5 day waves with S=3. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; general or miscellaneous)
APA, Harvard, Vancouver, ISO, and other styles
42

Luo, Y., A. H. Manson, C. E. Meek, C. K. Meyer, M. D. Burrage, D. C. Fritts, C. M. Hall, et al. "The 16-day planetary waves: multi-MF radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results." Annales Geophysicae 20, no. 5 (May 31, 2002): 691–709. http://dx.doi.org/10.5194/angeo-20-691-2002.

Full text
Abstract:
Abstract. The mesospheric and lower thermospheric (MLT) winds (60–100 km) obtained by multiple MF radars, located from the arctic to equator at Tromsø (70° N, 19° E), Saskatoon (52° N, 107° W), London (43° N, 81° W), Hawaii (21° N, 157° W) and Christmas Island (2° N, 157° W), respectively, are used to study the planetary-scale 16-day waves. Based on the simultaneous observations (1993/1994), the variabilities of the wave amplitudes, periods and phases are derived. At mid- and high-latitude locations the 16-day waves are usually pervasive in the winter-centred seasons (October through March), with the amplitude gradually decreasing with height. From the subtropical location to the equator, the summer wave activities become strong at some particular altitude where the inter-hemisphere wave ducts possibly allow for the leakage of the wave from the other hemispheric winter. The observational results are in good agreement with the theoretical conclusion that, for slowly westward-traveling waves, such as the 16-day wave, vertical propagation is permitted only in an eastward background flow of moderate speed which is present in the winter hemisphere. The wave period also varies with height and time in a range of about 12–24 days. The wave latitudinal differences and the vertical structures are compared with the Global Scale Wave Model (GSWM) for the winter situation. Although their amplitude variations and profiles have a similar tendency, the discrepancies are considerable. For example, the maximum zonal amplitude occurs around 40° N for radar but 30° N for the model. The phase differences between sites due to the latitudinal effect are basically consistent with the model prediction of equatorward phase-propagation. The global 16-day waves at 95 km from the HRDI wind measurements during 1992 through 1995 are also displayed. Again, the wave is a winter dominant phenomenon with strong amplitude around the 40–60° latitude-band on both hemispheres.Key words. Meteorology and atmospheric dynamics – waves and tides – middle atmosphere dynamics – thermospheric dynamics
APA, Harvard, Vancouver, ISO, and other styles
43

Woodfield, E. E., J. A. Davies, M. Lester, T. K. Yeoman, P. Eglitis, and M. Lockwood. "Nightside studies of coherent HF Radar spectral width behaviour." Annales Geophysicae 20, no. 9 (September 30, 2002): 1399–413. http://dx.doi.org/10.5194/angeo-20-1399-2002.

Full text
Abstract:
Abstract. A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1) exists poleward of a region of low HF spectral width (<200 ms-1). Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT) on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1) have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the regions of high spectral width are observed both on closed and open field lines the use of the boundary between low and high spectral width as an ionospheric proxy for the open/closed field line boundary is not a simple matter, if indeed it is possible at all.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities)
APA, Harvard, Vancouver, ISO, and other styles
44

Matsui, H., P. A. Puhl-Quinn, V. K. Jordanova, Y. Khotyaintsev, P. A. Lindqvist, and R. B. Torbert. "Derivation of inner magnetospheric electric field (UNH-IMEF) model using Cluster data set." Annales Geophysicae 26, no. 9 (September 23, 2008): 2887–98. http://dx.doi.org/10.5194/angeo-26-2887-2008.

Full text
Abstract:
Abstract. We derive an inner magnetospheric electric field (UNH-IMEF) model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF) values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4). Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS). Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.
APA, Harvard, Vancouver, ISO, and other styles
45

Sandholt, P. E., and C. J. Farrugia. "Poleward moving auroral forms (PMAFs) revisited: responses of aurorae, plasma convection and Birkeland currents in the pre- and postnoon sectors under positive and negative IMF <I>B<sub>y</sub></I> conditions." Annales Geophysicae 25, no. 7 (July 30, 2007): 1629–52. http://dx.doi.org/10.5194/angeo-25-1629-2007.

Full text
Abstract:
Abstract. Using five case studies, we investigate the dynamical evolution of dayside auroral precipitation in relation to plasma convection, classifying it by the IMF By component and position with respect to noon. Auroral observations were made by meridian scanning photometers (MSPs) and an all-sky camera (ASC) in Ny Ålesund, Svalbard at 76° MLAT, while the spatial structure of the ionospheric plasma convection is inferred from SuperDARN radars and ion drift observations from spacecraft in polar orbit. The IMF configuration of major interest here is one pointing southward and with a dominant east-west component. Our emphasis is on the auroral phenomenon of PMAFs (poleward moving auroral forms), which are ionospheric signatures of pulsed reconnection at the magnetopause. We distinguish between PMAFs/prenoon and PMAFs/postnoon. These two activities are found to be separated by an auroral form around noon with attenuated emission at 630.0 nm. We document for the first time that this "midday gap aurora" appears in the form of a midday auroral brightening sequence (MABS). We study the PMAF activity consisting of an initial brightening phase and the later stages of PMAF evolution in relation to plasma convection cells, flow vorticity, and precipitation boundaries in the prenoon and postnoon sectors for both By polarities. Flow channels (PIFs) associated with PMAFs are strengthened by polarization effects at auroral boundaries. Addressing the implications of our proposed, extended perspective on dayside auroral morphology under southeast/west IMF for M-I coupling associated with pulsed magnetopause reconnection (FTEs), we draw inferences on the MLT-dependent geoeffectiveness (Birkeland current/auroral intensity) of magnetopause FTEs (subsolar region versus flanks).
APA, Harvard, Vancouver, ISO, and other styles
46

Sandholt, P. E., Y. Andalsvik, and C. J. Farrugia. "Polar cap convection/precipitation states during Earth passage of two ICMEs at solar minimum." Annales Geophysicae 28, no. 4 (April 30, 2010): 1023–42. http://dx.doi.org/10.5194/angeo-28-1023-2010.

Full text
Abstract:
Abstract. We report important new aspects of polar cap convection and precipitation (dawn-dusk and inter-hemisphere asymmetries) associated with the different levels of forcing of the magnetosphere by two interplanetary (IP) magnetic clouds on 20 November 2007 and 17 December 2008 during solar minimum. Focus is placed on two intervals of southward magnetic cloud field with large negative By components (Bx=−5 versus 0 nT) and with high and low plasma densities, respectively, as detected by spacecraft Wind. The convection/precipitation states are documented by DMSP spacecraft (Southern Hemisphere) and SuperDARN radars (Northern Hemisphere). The (negative) By component of the cloud field is accompanied by a newly-discovered flow channel (called here FC 2) threaded by old open field lines (in polar rain precipitation) at the dusk and dawn sides of the polar cap in the Northern and Southern Hemispheres, respectively, and a corresponding Svalgaard-Mansurov (S-M) effect in ground magnetic deflections. On 20 November 2007 the latter S-M effect in the Northern winter Hemisphere appears in the form of a sequence of six 5–10 min long magnetic deflection events in the 71–74° MLAT/14:30–16:00 MLT sector. The X-deflections are consistent with the flow direction in FC 2 (i.e. caused by Hall currents) in both IP cloud cases. The presence of a lobe cell and associated polar arcs in the Southern (summer) Hemisphere in the low density (1–2 cm−3) and Bx=0 ICME case is accompanied by the dropout of polar rain precipitation in the dusk-side regime of sunward polar cap convection and inward-directed Birkeland current. The low-altitude observations are discussed in terms of momentum transfer via dynamo processes in the high- and low-latitude boundary layers and Birkeland currents located poleward of the traditional R1-R2 system.
APA, Harvard, Vancouver, ISO, and other styles
47

Sandholt, P. E., Y. Andalsvik, and C. J. Farrugia. "Polar cap flow channel events: spontaneous and driven responses." Annales Geophysicae 28, no. 11 (November 5, 2010): 2015–25. http://dx.doi.org/10.5194/angeo-28-2015-2010.

Full text
Abstract:
Abstract. We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP) coronal mass ejections (ICMEs) on 10 January and 25 July 2004. The channels of enhanced (>1 km/s) antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2) located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects) Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant). In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0) gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.
APA, Harvard, Vancouver, ISO, and other styles
48

Потехин, Александр, Aleksandr Potekhin, Артём Сетов, Artem Setov, Валентин Лебедев, Valentin Lebedev, Андрей Медведев, Andrey Medvedev, Дмитрий Кушнарев, and Dmitriy Kushnarev. "Prospective IS-MST radar. Potential and diagnostic capabilities." Solar-Terrestrial Physics 2, no. 3 (October 27, 2016): 3–21. http://dx.doi.org/10.12737/22281.

Full text
Abstract:
In the next few years, a new radar is planned to be built near Irkutsk. It should have capabilities of incoherent scatter (IS) radars and mesosphere-stratosphere-troposphere (MST) radars [Zherebtsov et al., 2011]. The IS-MST radar is a phased array of two separated antenna panels with a multichannel digital receiving system, which allows detailed space-time processing of backscattered signal. This paper describes characteristics, configuration, and capabilities of the antenna and transceiver systems of this radar. We estimate its potential in basic operating modes to study the ionosphere by the IS method at heights above 100 km and the atmosphere with the use of signals scattered from refractive index fluctuations, caused by turbulent mixing at heights below 100 km. The modeling shows that the radar will allow us to regularly measure neutral atmosphere parameters at heights up to 26 km as well as to observe mesosphere summer echoes at heights near 85 km in the presence of charged ice particles (an increase in Schmidt number) and mesosphere winter echoes at heights near 65 km with increasing background electron density. Evaluation of radar resources at the IS mode in two height ranges 100–600 and 600–2000 km demonstrates that in the daytime and with the accumulation time of 10 min, the upper boundaries of electron density and ionospheric plasma temperature are ~1500 and ~1300 km respectively, with the standard deviation of no more than 10 %. The upper boundary of plasma drift velocity is ~1100 km with the standard deviation of 45 m/s. The estimation of interferometric capabilities of the MST radar shows that it has a high sensitivity to objects of angular size near 7.5 arc min, and its potential accuracy in determining target angles can reach 40 arc sec.
APA, Harvard, Vancouver, ISO, and other styles
49

Medvedev, Andrey, Aleksandr Potekhin, Artem Setov, Dmitriy Kushnarev, and Valentin Lebedev. "All-atmosphere IS-MST Radar." Solar-Terrestrial Physics 6, no. 2 (June 27, 2020): 41–48. http://dx.doi.org/10.12737/stp-62202004.

Full text
Abstract:
The IS-MST radar, as the name implies, combines two different methods for studying the atmosphere using a backscatter signal. Turbulent fluctuations of the medium cause scattering in the mesosphere—stratosphere—troposphere (MST). In the upper atmosphere, incoherent scatter (IS) appears in ionospheric plasma. Special-purpose instruments have been built before such that measurements in one of these modes were the most effective. MST radars were utilized for studying wave activity in the lower and middle atmosphere; the IS radar, for ionospheric research. Nowadays, however, for a comprehensive investigation of atmospheric phenomena, it is necessary to have an idea of processes in all atmospheric layers and near-Earth space. The radar, which combines capabilities of IS and MST measurements, will be able to cover layers from the troposphere to the plasmosphere and to study processes of energy transfer from the lower and middle atmosphere to the ionosphere as well as the interaction of the magnetosphere with the upper atmosphere. Apart from atmospheric research, the radar will allow us to track spacecraft and space debris, determining precise coordinate characteristics. The antenna system is also suitable for radio astronomical observations. In the paper, we provide justification for the 154–162 MHz frequency range and discuss technical solutions of the IS-MST radar project and basic operating modes. In addition, we estimate radar diagnostic capabilities for different types of measurements.
APA, Harvard, Vancouver, ISO, and other styles
50

Friedt, Jean-Michel, Éric Bernard, and Madeleine Griselin. "Ground-Based Oblique-View Photogrammetry and Sentinel-1 Spaceborne RADAR Reflectivity Snow Melt Processes Assessment on an Arctic Glacier." Remote Sensing 15, no. 7 (March 30, 2023): 1858. http://dx.doi.org/10.3390/rs15071858.

Full text
Abstract:
The snowpack evolution during the melt season on an Arctic glacier is assessed using ground-based oblique-view cameras, spaceborne imaging and spaceborne RADAR. The repeated and systematic Synthetic Aperture RADAR (SAR) imaging by the European Space Agency’s Sentinel-1 spaceborne RADARs allows for all-weather, all-illumination condition monitoring of the snow-covered fraction of the glacier and hence assessing its water production potential. A comparison of the RADAR reflectivity with optical and multispectral imaging highlights the difference between the observed quantities—water content in the former, albedo in the latter—and the complementarity for understanding the snow melt processes. This work highlights the temporal inertia between the visible spring melting of the snowpack and the snow metamorphism. It was found that the snowpack exhibits that approximately 30 days before it starts to fade.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography