Academic literature on the topic 'Mixing equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mixing equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mixing equations"
Brigham, W. E. "Mixing Equations in Various Geometries." SPE Reservoir Engineering 1, no. 02 (March 1, 1986): 203–8. http://dx.doi.org/10.2118/4585-pa.
Full textBlasone, M., P. Jizba, and L. Smaldone. "Schwinger-Dyson equations and flavor mixing." Journal of Physics: Conference Series 1071 (August 2018): 012003. http://dx.doi.org/10.1088/1742-6596/1071/1/012003.
Full textŁoskot, K., and R. Rudnicki. "Mixing and some integro-functional equations." Aequationes Mathematicae 40, no. 1 (December 1990): 78–82. http://dx.doi.org/10.1007/bf02112282.
Full textKostić, Marko. "Hypercyclic and topologically mixing properties of abstract timefractional equations with discrete shifts." Sarajevo Journal of Mathematics 9, no. 2 (November 2013): 257–69. http://dx.doi.org/10.5644/sjm.09.2.10.
Full textEggl, Maximilian F., and Peter J. Schmid. "Shape optimization of stirring rods for mixing binary fluids." IMA Journal of Applied Mathematics 85, no. 5 (May 14, 2020): 762–89. http://dx.doi.org/10.1093/imamat/hxaa012.
Full textXUE, SHE-SHENG. "NEUTRINO MASSES AND MIXINGS." Modern Physics Letters A 14, no. 39 (December 21, 1999): 2701–8. http://dx.doi.org/10.1142/s0217732399002844.
Full textHall, Kenneth R., Gustavo A. Iglesias-Silva, and G. Ali Mansoori. "Quadratic mixing rules for equations of state." Fluid Phase Equilibria 91, no. 1 (November 1993): 67–76. http://dx.doi.org/10.1016/0378-3812(93)85079-2.
Full textKirkup, S. M., M. Wadsworth, D. G. Armour, R. Badheka, and J. A. Van Den Berg. "Computational solution of the atomic mixing equations." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 11, no. 4 (July 1998): 189–205. http://dx.doi.org/10.1002/(sici)1099-1204(199807/08)11:4<189::aid-jnm301>3.0.co;2-a.
Full textChitsaz, Mahzad, and Mani Fathali. "Effect of External Magnetic Field on Dynamics of Two-dimensional Isotropic Conducting Flow." E3S Web of Conferences 95 (2019): 02003. http://dx.doi.org/10.1051/e3sconf/20199502003.
Full textLozovatsky, I. D., and H. J. S. Fernando. "Mixing efficiency in natural flows." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1982 (January 13, 2013): 20120213. http://dx.doi.org/10.1098/rsta.2012.0213.
Full textDissertations / Theses on the topic "Mixing equations"
Johnson, A. E. "The effects of curvature and divergence on turbulent mixing layers." Thesis, University of Surrey, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279304.
Full textPibal, Douglas J. "Development and validation of MM5 MOS-based forecast equations for mixing height." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1446430.
Full textMcCabe, Ryan Matthew. "Small-scale coastal dynamics and mixing from a Lagrangian perspective /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/10963.
Full textAkhtar, Kareem. "Numerical Investigation using RANS Equations of Two-dimensional Turbulent Jets and Bubbly Mixing layers." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/34512.
Full textMaster of Science
Morlock, Merlin B. "Nonlinear mixing of two collinear Rayleigh waves." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50280.
Full textSommerville, Lesley Laverne. "A Parabolized navier-stokes model for static mixers." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/19535.
Full textHelgesen, James Karl. "Particle mixing and diffusion in the turbulent wake of cylinder arrays." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/11227.
Full textAroza, Benlloch Javier. "Dynamics of strongly continuous semigroups associated to certain differential equations." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/57186.
Full text[ES] La presente memoria "Dinámica de semigrupos fuertemente continuos asociadas a ciertas ecuaciones diferenciales'' es analizar, desde el punto de vista del análisis funcional, la dinámica de las soluciones de ecuaciones de evolución lineales. Estas soluciones pueden ser representadas por semigrupos fuertemente continuos en espacios de Banach de dimensión infinita. El objetivo de nuestra investigación es proporcionar condiciones globales para obtener caos, en el sentido de Devaney, y propiedades de estabilidad de semigrupos fuertemente continuos, los cuales son soluciones de ecuaciones de evolución lineales. Este trabajo está compuesto de tres capítulos principales. El Capítulo 0 es introductorio y define la terminología básica y notación usada, además de presentar los resultados básicos que usaremos a lo largo de esta tesis. Los Capítulos 1 y 2 describen, de forma general, un semigrupo fuertemente continuo inducido por un semiflujo en espacios de Lebesgue y en espacios de Sobolev, los cuales son solución de una ecuación diferencial lineal en derivadas parciales de primer orden. Además, algunas caracterizaciones de las principales propiedades dinámicas, incluyendo hiperciclicidad, mezclante, débil mezclante, caos y estabilidad, se obtienen a lo largo de estos capítulos. El Capítulo 3 describe las propiedades dinámicas de una ecuación en diferencias basada en el llamado modelo de nacimiento-muerte y analiza las condiciones previamente probadas para este modelo, mejorándolas empleando una estrategia diferente. La finalidad de esta tesis es caracterizar propiedades dinámicas para este tipo de semigrupos fuertemente continuos de forma general, cuando sea posible, y extender estos resultados a otros espacios. A lo largo de esta memoria, estos resultados son comparados con los resultados previos dados por varios autores en años recientes.
[CAT] La present memòria "Dinàmica de semigrups fortament continus associats a certes equacions diferencials'' és analitzar, des del punt de vista de l'anàlisi funcional, la dinàmica de les solucions d'equacions d'evolució lineals. Aquestes solucions poden ser representades per semigrups fortament continus en espais de Banach de dimensió infinita. L'objectiu de la nostra investigació es proporcionar condicions globals per obtenir caos, en el sentit de Devaney, i propietats d'estabilitat de semigrups fortament continus, els quals són solucions d'equacions d'evolució lineals. Aquest treball està compost de tres capítols principals. El Capítol 0 és introductori i defineix la terminologia bàsica i notació utilitzada, a més de presentar els resultats bàsics que utilitzarem al llarg d'aquesta tesi. Els Capítols 1 i 2 descriuen, de forma general, un semigrup fortament continu induït per un semiflux en espais de Lebesgue i en espais de Sobolev, els quals són solució d'una equació diferencial lineal en derivades parcials de primer ordre. A més, algunes caracteritzacions de les principals propietats dinàmiques, incloent-hi hiperciclicitat, mesclant, dèbil mesclant, caos i estabilitat, s'obtenen al llarg d'aquests capítols. El Capítol 3 descrivís les propietats dinàmiques d'una equació en diferències basada en el model de naixement-mort i analitza les condicions prèviament provades per aquest model, millorant-les utilitzant una estratègia diferent. La finalitat d'aquesta tesi és caracteritzar propietats dinàmiques d'aquest tipus de semigrups fortament continus de forma general, quan siga possible, i estendre aquests resultats a altres espais. Al llarg d'aquesta memòria, aquests resultats són comparats amb els resultats previs obtinguts per diversos autors en anys recents.
Aroza Benlloch, J. (2015). Dynamics of strongly continuous semigroups associated to certain differential equations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57186
TESIS
Ostatnicky, Tomas. "Model calculation of four-wave mixing polarization and dynamics in bulk and confined semiconductors." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/OSTATNICKY_Tomas_2005.pdf.
Full textLee, Wei-Koon. "Chaotic mixing in wavy-type channels and two-layer shallow flows." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:f5fcbe34-babb-4fae-9204-28de8774eb98.
Full textBooks on the topic "Mixing equations"
Center, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textGirimaji, Sharath S. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Find full textCenter, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textCenter, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textOrbey, Hasan. Modeling vapor-liquid equilibria: Cubic equations of state and their mixing rules. New York: Cambridge University Press, 1998.
Find full textG, Ostrovskii Alexander, ed. Advection and diffusion in random media: Implications for sea surface temperature anomalies. Dordrecht: Kluwer Academic, 1997.
Find full textMiroslav, Krstić, ed. Flow control by feedback: Stabilization and mixing. London: Springer, 2003.
Find full textUnited States. National Aeronautics and Space Administration., ed. Numerical solutions of the complete Navier-Stokes equations: Progress report no. 16 for the period July 1, 1998 to December 31, 1989. Raleigh, N.C: Dept. of Mechanical and Aerospace Engineering, North Carolina State University, 1989.
Find full textUnited States. National Aeronautics and Space Administration., ed. Numerical solutions of the complete Navier-Stokes equations: Progress report no. 27 for the period October 1, 1995 to September 30, 1996. Raleigh, N.C: Dept. of Mechanical and Aerospace Engineering, North Carolina State University, 1996.
Find full textJ, Morris Philip, and United States. National Aeronautics and Space Administration., eds. Supersonic coaxial jet noise predictions. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Mixing equations"
Mansoori, G. Ali. "Mixing Rules for Cubic Equations of State." In Equations of State, 314–30. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0300.ch015.
Full textCopeman, Thomas W., and Paul M. Mathias. "Recent Mixing Rules for Equations of State." In Equations of State, 352–70. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0300.ch017.
Full textEly, James F. "Improved Mixing Rules for One-Fluid Conformal Solution Calculations." In Equations of State, 331–50. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0300.ch016.
Full textConstantin, Peter, Laura Gioia Andrea Keller, and Camilla Nobili. "Existence, uniqueness, regularity and long time behavior of hydrodynamic evolution equations." In Transport, Fluids, and Mixing, 63–94. Warsaw, Poland: De Gruyter Open, 2017. http://dx.doi.org/10.1515/9783110571240-003.
Full textPanagiotopoulos, A. Z., and R. C. Reid. "New Mixing Rule for Cubic Equations of State for Highly Polar, Asymmetric Systems." In Equations of State, 571–82. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0300.ch028.
Full textMaasoumi, Esfandiar. "Mixing Forecasts in Linear Simultaneous Equations Under Quadratic Loss." In Contributions to Consumer Demand and Econometrics, 176–88. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-12221-9_10.
Full textLipp, Tobias, Grégoire Loeper, and Olivier Pironneau. "Mixing Monte-Carlo and Partial Differential Equations for Pricing Options." In Partial Differential Equations: Theory, Control and Approximation, 323–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_13.
Full textCastillo-Chavez, C., and S. Busenberg. "On the Solution of the Two-Sex Mixing Problem." In Differential Equations Models in Biology, Epidemiology and Ecology, 80–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-45692-3_7.
Full textBenmekki, E. H., T. Y. Kwak, and G. A. Mansoori. "Van der Waals Mixing Rules for Cubic Equations of State." In ACS Symposium Series, 101–14. Was,hington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0329.ch009.
Full textKostić, Marko. "Hypercyclic and Topologically Mixing Properties of Certain Classes of Abstract Time-Fractional Equations." In Difference Equations, Discrete Dynamical Systems and Applications, 155–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52927-0_12.
Full textConference papers on the topic "Mixing equations"
Fernandes, Sara, and Sumitha Jayachandran. "Conductance and Mixing Time in Discrete Dynamical Systems." In Proceedings of the Twelfth International Conference on Difference Equations and Applications. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814287654_0018.
Full textKepros, John G. "Raman scattering or four-wave mixing." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tuq6.
Full textJohansen, Per Michael, and Arne Skov Jensen. "Dynamics of Magnetophotorefractive Wave Mixing." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/pmed.1993.fre.1.
Full textFarzad, M. Hosseini. "Exact solution of coupled wave equations in degenerate four-wave mixing." In 17th Congress of the International Commission for Optics: Optics for Science and New Technology. SPIE, 1996. http://dx.doi.org/10.1117/12.2316105.
Full textSargent, Murray, and Stephan W. Koch. "Multiwave mixing in semiconductor media." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.fb3.
Full textWa¨lter, Bettina, and Peter Ehrhard. "Numerical Simulation of Fluid Flows and Mixing in Microchannels Induced by Internal Electrodes." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82016.
Full textVan-Le, Thuy Hong, Sangmo Kang, Yong Kweon Suh, and Yangyang Wang. "Chaotic Mixing in Three-Dimensional Micro Channel." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52193.
Full textTang, G. H., X. J. Gu, R. W. Barber, D. R. Emerson, Y. H. Zhang, and J. M. Reese. "Pulsating Electroosmotic Flow and Wall Block Mixing in Microchannels." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52207.
Full textDeb, P., and Pradip Majumdar. "Direct Numerical Simulation of Mixing of a Passive in Decaying Turbulence." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1086.
Full textSvensson, Erik D. "Computational Characterization of Passive Fluid Mixing in Microfluidics." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58422.
Full textReports on the topic "Mixing equations"
Peters, Hartmut. Development of a Two-Equation Turbulence Model for Mean Shear- and Internal Wave-Driven Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542572.
Full textMikkelsen, D. R. Solution of the Fokker-Planck equation with mixing of angular harmonics by beam-beam charge exchange. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5577657.
Full textRahai, Hamid, and Jeremy Bonifacio. Virus Control Aboard a Commuter Bus. Mineta Transporation Institute, October 2023. http://dx.doi.org/10.31979/mti.2023.2248.
Full textGround-water flow simulation and chemical and isotopic mixing equation analysis to determine source contributions to the Missouri River alluvial aquifer in the vicinity of the Independence, Missouri, well field. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024208.
Full text