Academic literature on the topic 'Mitochondrial diseases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mitochondrial diseases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mitochondrial diseases"
Tang, Xiaoqiang, Xiao-Feng Chen, Hou-Zao Chen, and De-Pei Liu. "Mitochondrial Sirtuins in cardiometabolic diseases." Clinical Science 131, no. 16 (July 24, 2017): 2063–78. http://dx.doi.org/10.1042/cs20160685.
Full textFu, Ailing. "Mitotherapy as a Novel Therapeutic Strategy for Mitochondrial Diseases." Current Molecular Pharmacology 13, no. 1 (January 15, 2020): 41–49. http://dx.doi.org/10.2174/1874467212666190920144115.
Full textMacdonald, Ruby, Katy Barnes, Christopher Hastings, and Heather Mortiboys. "Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically?" Biochemical Society Transactions 46, no. 4 (July 19, 2018): 891–909. http://dx.doi.org/10.1042/bst20170501.
Full textWang, Sheng-Fan, Shiuan Chen, Ling-Ming Tseng, and Hsin-Chen Lee. "Role of the mitochondrial stress response in human cancer progression." Experimental Biology and Medicine 245, no. 10 (April 23, 2020): 861–78. http://dx.doi.org/10.1177/1535370220920558.
Full textHabbane, Mouna, Julio Montoya, Taha Rhouda, Yousra Sbaoui, Driss Radallah, and Sonia Emperador. "Human Mitochondrial DNA: Particularities and Diseases." Biomedicines 9, no. 10 (October 1, 2021): 1364. http://dx.doi.org/10.3390/biomedicines9101364.
Full textNgo, Jennifer, Corey Osto, Frankie Villalobos, and Orian S. Shirihai. "Mitochondrial Heterogeneity in Metabolic Diseases." Biology 10, no. 9 (September 17, 2021): 927. http://dx.doi.org/10.3390/biology10090927.
Full textCaffarra Malvezzi, Cristina, Aderville Cabassi, and Michele Miragoli. "Mitochondrial mechanosensor in cardiovascular diseases." Vascular Biology 2, no. 1 (July 22, 2020): R85—R92. http://dx.doi.org/10.1530/vb-20-0002.
Full textChe, Ruochen, Yanggang Yuan, Songming Huang, and Aihua Zhang. "Mitochondrial dysfunction in the pathophysiology of renal diseases." American Journal of Physiology-Renal Physiology 306, no. 4 (February 15, 2014): F367—F378. http://dx.doi.org/10.1152/ajprenal.00571.2013.
Full textSui, Guo-Yan, Feng Wang, Jin Lee, and Yoon Seok Roh. "Mitochondrial Control in Inflammatory Gastrointestinal Diseases." International Journal of Molecular Sciences 23, no. 23 (November 28, 2022): 14890. http://dx.doi.org/10.3390/ijms232314890.
Full textKochar Kaur, Kulvinder, Gautam Allahbadia, and Mandeep Singh. "A update on role of mitochondrial transport in etiopathogenesis & management of various CNS diseases, neurodegenerative diseases, immunometabolic diseases, cancer, viral infections inclusive of COVID 19 disease-a systematic review." Journal of Diabetes, Metabolic Disorders & Control 8, no. 2 (November 29, 2021): 91–103. http://dx.doi.org/10.15406/jdmdc.2021.08.00228.
Full textDissertations / Theses on the topic "Mitochondrial diseases"
Gu, Mei. "Mitochondrial function in Parkinson's disease and other neurodegenerative diseases." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322371.
Full textWredenberg, Anna. "Mitochondrial dysfunction in ageing and degenerative disease /." Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-311-5/.
Full textAddo, Mathew Glover. "Identification of new nuclear genes involved in the mitochondrial genome maintenance." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112065.
Full textMitochondrial respiratory chain diseases of nuclear origin represent one of the major causes of metabolic disorders. These diseases are characterized by a huge clinical and genetic heterogeneity which is a major problem in identifying the disease causing gene. Although several gene mutations have already been found in some patients or families, the disease causing gene of the majority is yet to be determined. The overall structure and gene content of the mitochondrial genome and the proteins required for mtDNA transactions are largely conserved from yeast to human offering the opportunity to use animal models to understand the molecular basis of mitochondrial dysfunctions. To expand the number of human candidate genes of mitochondrial diseases involved in mtDNA maintenance, we have developed in this study, the nematode Caenorhabditis elegans as a model organism to identify new proteins involved in mtDNA maintenance by combining RNAi and ethidium bromide exposure. We have developed a large-scale screening method of genes required for mtDNA maintenance in the worm and initially indentified four new C. elegans genes (atad-3, dnj-10, polrmt, phi-37 and immt-1) involved in mtDNA stability. The human homologs of these genes (ATAD3, DNAJA3, POLRMT and ATP5A1) can be now considered as candidate genes for patients with quantitative mtDNA deficiencies. Using our screening design we have begun to screen all the C. elegans genes encoding mitochondrial proteins. Of the 721 estimated C. elegans mitochondrial genes homologous to human genes, we have tested 185 genes and found that 41 genes are required for the maintenance of the mitochondrial genome in post mitotic cells. These genes fall into three main functional categories of metabolism, protein synthesis and oxidative phosphorylation. Finally, in this study, we investigated the reversibility of mtDNA depletion with drugs to counteract POLG dificiency. Three molecules, Chlorhexidine, Resveratrol and Bezafibrate, have been tested to restore normal mtDNA content and worm life cycle. These experiments hold promise for future work using C. elegans as a pharmacological model for mitochondrial diseases.Altogether, the data generated in this work is a starting point for promising advances in the mitochondrial field, showing the relevance of the nematode as a model organism to study fundamental processes as well as human health research
CIVILETTO, GABRIELE. "Opa1 overexpression as potential therapy in mitochondrial diseases." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/55460.
Full textEkstrand, Mats. "Mitochondrial dysfunction in neurodegeneration /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-204-7/.
Full textAryamvally, Anjali. "Mitochondrial Replacement Therapy: Genetic Counselors’ Experiences, Knowledge and Opinions." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583998248123854.
Full textGranatiero, Veronica. "The role of calcium homeostasis in mitochondrial diseases and neurodegeneration." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423748.
Full textIl Ca2+ è uno dei principali secondi messaggeri cellulari, ed in particolare il segnale Ca2+ mitocondriale è implicato in vari processi fisiologici che spaziano dal metabolismo, attraverso il controllo della respirazione mitocondriale, alla risposta a condizioni di stress. Nonostante alcuni meccanismi d’azione non siano ancora stati chiariti, il ruolo del Ca2+ nell’attivazione del processo apoptotico è ampiamente riconosciuto e comprovato. Al contrario, il coinvolgimento del segnale Ca2+ in un altro importante processo, quale quello autofagico, ha cominciato ad emergere solo recentemente. Il ruolo del Ca2+ a livello fisiologico risulta dunque fondamentale all’interno della cellula e alterazioni nella sua regolazione hanno ripercussioni così profonde da indurre l'evolversi di differenti patologie umane. Nel presente lavoro verrà approfondito il ruolo del Ca2+ mitocondriale in particolar modo in due modelli di patologie umane: le malattie mitocondriali e la neurodegenerazione. Le malattie mitocondriali sono un gruppo molto eterogeneo di patologie, accomunate principalmente dalla perdita di funzionalità della catena respiratoria. Come modello di studio di queste patologie abbiamo scelto di utilizzare delle colture primarie di fibroblasti umani derivanti da pazienti con una specifica mutazione nel gene per la subunità ND5 del complesso I della catena respiratoria del DNA mitocondriale. L’utilizzo di questo modello sperimentale si è rivelato molto utile per l’identificazione di una interessante correlazione tra la diminuzione dell’uptake di Ca2+ mitocondriale e l’aumento del flusso autofagico in queste cellule. Inoltre, i nostri risultati suggeriscono che la causa del ridotto accumulo di Ca2+ mitocondriale è direttamente correlato con un riarrangiamento spaziale nella distribuzione di reticolo endoplasmatico e mitocondri, tale per cui i siti di contatti presenti tra questi due organelli diminuiscono nettamente. La neurodegenerazione è causata dalla selettiva e progressiva perdita di specifici tipi neuronali. Allo scopo di studiare il coinvolgimento del Ca2+ nella neurodegenerazione, abbiamo sviluppato un modello in vitro di neuroni primari di corteccia di topo, in cui abbiamo analizzato gli effetti della sovraespressione del canale per il Ca2+ mitocondriale, MCU (mitochondrial Ca2+ uniporter). Dai nostri dati possiamo concludere che la sovraespressione di MCU ha degli effetti dannosi per le cellule neuronali, tanto da indurne la morte. Inoltre, abbiamo dei risultati preliminari anche in un sistema in vivo, i quali confermano e consolidano i dati ottenuti in vitro. Nello specifico, abbiamo iniettato vettori adeno-virali esprimenti il canale del Ca2+ mitocondriale nel mesencefalo di topo, utilizzando la tecnica dell’iniezione stereotassica, ed anche in questo caso osserviamo l’induzione di morte cellulare e degenerazione neuronale
Aachi, Venkat Raghav. "Preliminary Characterization of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP) Activity in Mouse Heart Mitochondria." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/1667.
Full textLiang, Christina Luh-Unn. "The Australian Mitochondrial Disease Study – Recognising and improving the diagnosis and management outcomes of adult patients with mitochondrial diseases." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16723.
Full textFranco, Iborra Sandra. "Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/565668.
Full textIn the past years, several important advances have expanded our understanding of the pathways that lead to cell dysfunction and death in Parkinson’s disease (PD) and Huntington’s disease (HD). Both diseases are movement disorders characterized by the loss of a specific subset of neurons within the basal ganglia, dopaminergic neurons in the substantia nigra pars compacta (SNpc), in the case of PD, and medium spiny neurons in the striatum, in the case of HD,. Despite distinct clinical and pathological features, these two neurodegenerative disorders share critical underlying pathogenic mechanisms such as the presence of misfolded and/or aggregated proteins, oxidative stress and mitochondrial anomalies. Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. In this thesis I have studied in depth some mitochondrial quality control mechanisms in the context of PD and HD, in order to broaden the knowledge about the pathomechanisms leading to cell death. In the first chapter I have studied mitochondrial protein import in in vitro and in vivo models of PD. In vitro, complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import. This was associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Therefore, we aimed to reestablish the mitochondrial protein import by overexpressing two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23). Overexpression of TOM20 and TIM23 in vitro restored protein import into mitochondria and ameliorated mitochondrial dysfunction and cell death. Complex I inhibition also impaired mitochondrial protein import and led to dopaminergic neurodegeneration in vivo. Overexpression of TIM23 partially rescued protein import into mitochondria and slightly protected dopaminergic neurons in the SNpc. On the contrary, TOM20 overexpression did not rescue protein import into mitochondria and exacerbated neurodegeneration in both SNpc and striatum. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to target other elements in the system. In the second chapter, I have studied the role of huntingtin in mitophagy and how the polyglutamine expansion present in mutant huntingtin can affect its function. For such, I worked with differentiated striatal ST-Q7 (as control) and ST-Q111 (as mutant) cells, expressing full length huntingtin. In these conditions, induced mitophagy was not mediated by Parkin recruitment into depolarized mitochondria. Mutant huntingtin impaired induced mitophagy by altering wildtype huntingtin scaffolding activity at different steps of mitophagy process: (i) ULK1 activation through its release from the mTORC1, (ii) Beclin1-Vps15 complex formation, (iii) interaction of the mitophagy adapters OPTN and NDP52 with huntingtin and (iv) with LC3. As a result, mitochondria from ST-Q111 cells exhibited increased damage and altered mitochondrial respiration. These results uncover impaired mitophagy as a potential pathological mechanism linked with HD. In conclusion, we have discovered new mitochondrial targets for PD and HD emphasizing the important role that mitochondrial quality control plays in neurodegeneration
Books on the topic "Mitochondrial diseases"
James, Holt Ian, ed. Genetics of mitochondrial diseases. Oxford: Oxford University Press, 2003.
Find full textNavas, Placido, and Leonardo Salviati, eds. Mitochondrial Diseases. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70147-5.
Full textLestienne, Patrick, ed. Mitochondrial Diseases. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5.
Full textservice), ScienceDirect (Online, ed. Mitochondrial function: Mitochondrial protein kinases, protein phosphatases and mitochondrial diseases. San Diego, Calif: Academic Press/Elsevier, 2009.
Find full textN, Gellerich Frank, Zierz S, and Colloquium on Mitochondria and Myopathies (1st : 1995 : Halle an der Saale, Germany), eds. Detection of mitochondrial diseases. Dordrecht: Kluwer Academic, 1997.
Find full textSun, Hongzhi, and Xiangdong Wang, eds. Mitochondrial DNA and Diseases. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6674-0.
Full textGellerich, Frank Norbert, and Stephan Zierz, eds. Detection of Mitochondrial Diseases. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6111-8.
Full textAnna, Gvozdjáková, ed. Mitochondrial medicine: Mitochondrial metabolism, diseases, diagnosis and therapy. Dordrecht: Springer, 2008.
Find full textV, Schapira Anthony H., and DiMauro S, eds. Mitochondrial disorders in neurology. Oxford: Butterworth-Heinemann, 1994.
Find full textS, DiMauro, Hirano Michio, and Schon Eric A, eds. Mitochondrial medicine. Abingdon [U.K.]: Informa Healthcare, 2006.
Find full textBook chapters on the topic "Mitochondrial diseases"
Lestienne, P. "Introduction." In Mitochondrial Diseases, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_1.
Full textBuchet, K., and C. Godinot. "ATPase-ATP Synthase and Mitochondrial Pathology." In Mitochondrial Diseases, 129–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_10.
Full textFiore, C., V. Trezeguet, C. Schwimmer, P. Roux, R. Noel, A. C. Dianoux, G. J. M. Lauquin, G. Brandolin, and P. V. Vignais. "Physiology and Pathophysiology of the Mitochondrial ADP/ATP Carrier." In Mitochondrial Diseases, 143–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_11.
Full textClottes, E., O. Marcillat, M. J. Vacheron, C. Leydier, and C. Vial. "The Normal and Pathological Structure, Function and Expression of Mitochondrial Creatine Kinase." In Mitochondrial Diseases, 159–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_12.
Full textMarsac, C., D. François, F. Fouque, and C. Benelli. "Pyruvate Dehydrogenase Deficiencies." In Mitochondrial Diseases, 173–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_13.
Full textCoppey, J., C. Durieux, and M. Coppey-Moisan. "Electrochemical Gradient and Mitochondrial DNA in Living Cells." In Mitochondrial Diseases, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_14.
Full textAlziari, S., N. Petit, E. Lefai, F. Beziat, P. Lecher, S. Touraille, R. Debise, and F. Morel. "A Heteroplasmic Strain of D. Subobscura. An Animal Model of Mitochondrial Genome Rearrangement." In Mitochondrial Diseases, 197–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_15.
Full textBelcour, L., A. Sainsard-Chanet, C. Jamet-Vierny, and M. Picard. "Stability of the Mitochondrial Genome of Podospora anserina and Its Genetic Control." In Mitochondrial Diseases, 209–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_16.
Full textLestienne, P., and J. Veziers. "The Control of Ageing and Mitochondria." In Mitochondrial Diseases, 229–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_17.
Full textMignotte, B., and G. Kroemer. "Roles of Mitochondria in Apoptosis." In Mitochondrial Diseases, 239–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_18.
Full textConference papers on the topic "Mitochondrial diseases"
Li, Ching-Wen, Pao-Hsin Yen, and Gou-Jen Wang. "A Cascade Microfluidic Device for High Quality Mitochondria Extraction." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46117.
Full textHorvath, R. "Molecular mechanisms of reversible infantile mitochondrial diseases." In 24. Kongress des Medizinisch-Wissenschaftlichen Beirates der Deutschen Gesellschaft für Muskelkranke (DGM) e.V. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685013.
Full textNesbitt, Victoria, and Judy Wadsworth. "1376 Supplementary feeding in children with mitochondrial diseases." In Royal College of Paediatrics and Child Health, Abstracts of the RCPCH Conference–Online, 15 June 2021–17 June 2021. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2021. http://dx.doi.org/10.1136/archdischild-2021-rcpch.599.
Full textHorvath, Rita. "Mitochondrial Diseases: Diagnosis and Novel Approach for Treatment." In Congenital Dystrophies - Neuromuscular Disorders Precision Medicine: Genomics to Care and Cure. Hamad bin Khalifa University Press (HBKU Press), 2020. http://dx.doi.org/10.5339/qproc.2020.nmd.18.
Full textAlvarez-Mulett, S., L. G. Gomez-Escobar, E. Sanchez, M. Rice, A. Racanelli, X. Wu, A. M. K. Choi, and R. J. Kaner. "Mitochondrial DNA as Biomarker to Differentiate Interstitial Lung Diseases." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7885.
Full textEvseeva, G., E. Knizhnikova, R. Telepneva, N. Kuderova, S. V. Suprun, E. Suprun, V. Kozlov, and O. Lebed'ko. "Mitochondrial Dysfunction in Chronic Diseases of the Respiratory Organs." In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a3453.
Full textBank, William J., and Britton Chance. "Diagnosis of mitochondrial diseases by near-infrared spectroscopy (NIRS)." In Photonics West '95, edited by Britton Chance and Robert R. Alfano. SPIE, 1995. http://dx.doi.org/10.1117/12.210026.
Full textKrželj, Vjekoslav, and Ivana Čulo Čagalj. "INHERITED METABOLIC DISORDERS AND HEART DISEASES." In Symposium with International Participation HEART AND … Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. http://dx.doi.org/10.5644/pi2019.181.02.
Full textNesbitt, Victoria, and Rebecca Moore. "1404 Education health care plans for children with mitochondrial diseases." In Royal College of Paediatrics and Child Health, Abstracts of the RCPCH Conference–Online, 15 June 2021–17 June 2021. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2021. http://dx.doi.org/10.1136/archdischild-2021-rcpch.621.
Full textRezende, Maria Clara Lopes, Maria Luiza Franco de Oliveira, Júlia Campos Fabri, Maria Júlia Filgueiras Granato, Mariana Vanon Moreira, and Leandro Vespoli Campos. "Neuroprotective Effects of Creatine Supplementation in Neurodegenerative Diseases." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.234.
Full textReports on the topic "Mitochondrial diseases"
Ryan Mailloux, Ryan Mailloux. S-glutathionylation reactions in mitochondrial function and disease. Experiment, October 2014. http://dx.doi.org/10.18258/3738.
Full textGluck, Martin R. Parkinson's Disease: The Link Between Monoamine Oxidase and Mitochondrial Respiration. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada612171.
Full textSurmeier, D. J. Glutamate Signaling and Mitochondrial Dysfunction in Models of Parkinson's Disease. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada604089.
Full textLee, Seung-Jae. Role of Oligomeric alpha-Synuclein in Mitochondrial Membrane Permeabilization and Neurodegeneration in Parkinson's Disease. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada427150.
Full text