Academic literature on the topic 'Mirror symmetry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mirror symmetry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mirror symmetry"
Ma, Zhi Yong. "Research on Concept System of Rotation-Mirror Symmetry in Mechanical Systems." Applied Mechanics and Materials 201-202 (October 2012): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.7.
Full textTakahashi, Nobuyoshi. "Log Mirror Symmetry and Local Mirror Symmetry." Communications in Mathematical Physics 220, no. 2 (July 2001): 293–99. http://dx.doi.org/10.1007/pl00005567.
Full textBlumenhagen, Ralph, Rolf Schimmrigk, and Andreas Wiβkirchen. "(0,2) Mirror symmetry." Nuclear Physics B 486, no. 3 (February 1997): 598–628. http://dx.doi.org/10.1016/s0550-3213(96)00698-0.
Full textGross, Mark. "Topological mirror symmetry." Inventiones mathematicae 144, no. 1 (April 2001): 75–137. http://dx.doi.org/10.1007/s002220000119.
Full textWan, Daqing. "Arithmetic Mirror Symmetry." Pure and Applied Mathematics Quarterly 1, no. 2 (2005): 369–78. http://dx.doi.org/10.4310/pamq.2005.v1.n2.a7.
Full textZhang, Jun, and Gabriel Khan. "Statistical mirror symmetry." Differential Geometry and its Applications 73 (December 2020): 101678. http://dx.doi.org/10.1016/j.difgeo.2020.101678.
Full textMa, Zhi Yong. "Research on Concept System of Mechanical Glide Symmetry." Applied Mechanics and Materials 151 (January 2012): 433–37. http://dx.doi.org/10.4028/www.scientific.net/amm.151.433.
Full textMELKEMI, MAHMOUD, FREDERIC CORDIER, and NICKOLAS S. SAPIDIS. "A PROVABLE ALGORITHM TO DETECT WEAK SYMMETRY IN A POLYGON." International Journal of Image and Graphics 13, no. 01 (January 2013): 1350002. http://dx.doi.org/10.1142/s0219467813500022.
Full textGiveon, Amit, and Edward Witten. "Mirror symmetry as a gauge symmetry." Physics Letters B 332, no. 1-2 (July 1994): 44–50. http://dx.doi.org/10.1016/0370-2693(94)90856-7.
Full textDUNDEE, B., J. PERKINS, and G. CLEAVER. "OBSERVABLE/HIDDEN SECTOR BROKEN SYMMETRY FOR SYMMETRIC BOUNDARY CONDITIONS." International Journal of Modern Physics A 21, no. 16 (June 30, 2006): 3367–85. http://dx.doi.org/10.1142/s0217751x06031090.
Full textDissertations / Theses on the topic "Mirror symmetry"
Branco, Lucas Castello. "Higgs bundles, Lagrangians and mirror symmetry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.
Full textMertens, Adrian. "Mirror Symmetry in the presence of Branes." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.
Full textGu, Wei. "Gauged Linear Sigma Model and Mirror Symmetry." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.
Full textDoctor of Philosophy
In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Perevalov, Eugene V. "Type II/heterotic duality and mirror symmetry /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textRossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable Systems." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.
Full textKrefl, Daniel. "Real Mirror Symmetry and The Real Topological String." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.
Full textWilliams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Full textUeda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Full text0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Kadir, Shabnam Nargis. "The arithmetic of Calabi-Yau manifolds and mirror symmetry." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.
Full textPetracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Full textBooks on the topic "Mirror symmetry"
Mirror symmetry. Providence, RI: American Mathematical Society, 1999.
Find full textKentaro, Hori, ed. Mirror symmetry. Providence, RI: American Mathematical Society, 2003.
Find full textJinzenji, Masao. Classical Mirror Symmetry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1.
Full text1963-, Greene B., and Yau Shing-Tung 1949-, eds. Mirror symmetry II. Providence, RI: American Mathematical Society, 1997.
Find full text1949-, Yau Shing-Tung, ed. Mirror symmetry I. Providence, RI: American Mathematical Society, 1998.
Find full textCastaño-Bernard, Ricardo, Yan Soibelman, and Ilia Zharkov, eds. Mirror Symmetry and Tropical Geometry. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/527.
Full textCox, David A. Mirror symmetry and algebraic geometry. Providence, R.I: American Mathematical Society, 1999.
Find full text1964-, Aspinwall Paul, ed. Dirichlet branes and mirror symmetry. Providence, R.I: American Mathematical Society, 2009.
Find full textReality's mirror: Exploring the mathematics of symmetry. New York: Wiley, 1989.
Find full textConference on Complex Geometry and Mirror Symmetry (1995 Montréal, Québec). Mirror symmetry III: Proceedings of the Conference on Complex Geometry and Mirror Symmetry, Montréal, 1995. Edited by Phong Duong H. 1953-, Vinet Luc, and Yau Shing-Tung 1949-. Providence, R.I: American Mathematical Society, 1998.
Find full textBook chapters on the topic "Mirror symmetry"
Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij, et al. "Mirror Symmetry." In Concise Encyclopedia of Supersymmetry, 241. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_320.
Full textTalpo, Mattia. "Batyrev Mirror Symmetry." In Springer Proceedings in Mathematics & Statistics, 103–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_9.
Full textCox, David, and Sheldon Katz. "Mirror symmetry constructions." In Mathematical Surveys and Monographs, 53–72. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/068/04.
Full textClader, Emily, and Yongbin Ruan. "Mirror Symmetry Constructions." In B-Model Gromov-Witten Theory, 1–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_1.
Full textJinzenji, Masao. "Brief History of Classical Mirror Symmetry." In Classical Mirror Symmetry, 1–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_1.
Full textJinzenji, Masao. "Basics of Geometry of Complex Manifolds." In Classical Mirror Symmetry, 27–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_2.
Full textJinzenji, Masao. "Topological Sigma Models." In Classical Mirror Symmetry, 55–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_3.
Full textJinzenji, Masao. "Details of B-Model Computation." In Classical Mirror Symmetry, 83–108. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_4.
Full textJinzenji, Masao. "Reconstruction of Mirror Symmetry Hypothesis from a Geometrical Point of View." In Classical Mirror Symmetry, 109–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_5.
Full text"Mirror Symmetry." In Visual Symmetry, 5–30. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835321_0001.
Full textConference papers on the topic "Mirror symmetry"
Ge, Li. "Complex Mirror Symmetry in Optics." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.51.
Full textHACKING, PAUL, and SEAN KEEL. "MIRROR SYMMETRY AND CLUSTER ALGEBRAS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0073.
Full textThomas, Richard P. "An Exercise in Mirror Symmetry." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0067.
Full textDE LA OSSA, XENIA. "CALABI-YAU MANIFOLDS AND MIRROR SYMMETRY." In Proceedings of the Tenth General Meeting. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704276_0009.
Full textLenzi, Silvia, and Rita Lau. "Mirror (a)symmetry far from stability." In 10th Latin American Symposium on Nuclear Physics and Applications. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.194.0035.
Full textKONTSEVICH, MAXIM, and YAN SOIBELMAN. "HOMOLOGICAL MIRROR SYMMETRY AND TORUS FIBRATIONS." In Proceedings of the 4th KIAS Annual International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799821_0007.
Full textKatzarkov, Ludmil. "Birational geometry and homological mirror symmetry." In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0008.
Full textNahm, Werner. "Mirror symmetry and self-duality equations." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0023.
Full textMestetskiy, L., and A. Zhuravskaya. "Mirror Symmetry Detection in Digital Images." In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008976003310337.
Full textBeradze, Revaz, and Merab Gogberashvili. "LIGO signals from mirror world." In RDP online PhD school and workshop "Aspects of Symmetry". Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.412.0029.
Full textReports on the topic "Mirror symmetry"
Kachru, Shamit. Mirror Symmetry for Open Strings. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/763790.
Full textSin, Sang-Jin. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/812956.
Full textChuang, W. A Note on Mirror Symmetry for Manifolds with Spin(7) Holonomy. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/827006.
Full textHua, D., and T. Fowler. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/15014290.
Full text