Academic literature on the topic 'Mirabilis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mirabilis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mirabilis"

1

Liu, Ming-Che, Kuan-Ting Kuo, Hsiung-Fei Chien, Yi-Lin Tsai, and Shwu-Jen Liaw. "New Aspects of RpoE in Uropathogenic Proteus mirabilis." Infection and Immunity 83, no. 3 (December 29, 2014): 966–77. http://dx.doi.org/10.1128/iai.02232-14.

Full text
Abstract:
Proteus mirabilisis a common human pathogen causing recurrent or persistent urinary tract infections (UTIs). The underlying mechanisms forP. mirabilisto establish UTIs are not fully elucidated. In this study, we showed that loss of the sigma factor E (RpoE), mediating extracytoplasmic stress responses, decreased fimbria expression, survival in macrophages, cell invasion, and colonization in mice but increased the interleukin-8 (IL-8) expression of urothelial cells and swarming motility. This is the first study to demonstrate that RpoE modulated expression of MR/P fimbriae by regulatingmrpI, a gene encoding a recombinase controlling the orientation of MR/P fimbria promoter. By real-time reverse transcription-PCR, we found that the IL-8 mRNA amount of urothelial cells was induced significantly by lipopolysaccharides extracted fromrpoEmutant but not from the wild type. These RpoE-associated virulence factors should be coordinately expressed to enhance the fitness ofP. mirabilisin the host, including the avoidance of immune attacks. Accordingly,rpoEmutant-infected mice displayed more immune cell infiltration in bladders and kidneys during early stages of infection, and therpoEmutant had a dramatically impaired ability of colonization. Moreover, it is noteworthy that urea (the major component in urine) and polymyxin B (a cationic antimicrobial peptide) can induce expression ofrpoEby the reporter assay, suggesting that RpoE might be activated in the urinary tract. Altogether, our results indicate that RpoE is important in sensing environmental cues of the urinary tract and subsequently triggering the expression of virulence factors, which are associated with the fitness ofP. mirabilis, to build up a UTI.
APA, Harvard, Vancouver, ISO, and other styles
2

Barrow, RA, LM Murray, TK Lim, and RJ Capon. "Mirabilins (A-F): New Alkaloids From a Southern Australian Marine Sponge, Arenochalina mirabilis." Australian Journal of Chemistry 49, no. 7 (1996): 767. http://dx.doi.org/10.1071/ch9960767.

Full text
Abstract:
An Australian marine sponge Arenochalina mirabilis (Lendenfeld 1887) collected from the Great Australian Bight has been found to contain six tricyclic alkaloids, mirabilins A-F (5)-(10), isolated and identified as their N-acetyl derivatives (11)-(16). Structures for the mirabilins were secured by detailed spectroscopic analysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Shunri, Jiang, Liang Joshua, Feng Haiyan, Luo Dan, Blake Shester, Yang Liang, Lu Wen, Zhang Suzhi, Yang Yi, and Liang Peng. "Identification and characterization of REC66, a Ty1-copia-like retrotransposon in the genome of red flower of Mirabilis jalapa L." Archives of Biological Sciences 69, no. 2 (2017): 315–22. http://dx.doi.org/10.2298/abs160326103j.

Full text
Abstract:
Mirabilis jalapa Lis the most commonly grown ornamental species of Mirabilis and is available in a range of brilliant colors. However, genetic research on Mirabilis jalapa Lis limited. Using fluorescent differential display (FDD) screening, we report the identification of a novel Ty1-copia-like retrotransposon in the genome of the red flower of Mirabilis jalapa L, and we named it REC66based on its sequence homology to the GAG protein from Ty1-copiaretrotransposon. Using degenerate primers based on the DNA sequence of REC66, a total of fourteen different variants in reverse transcriptase (RT) sequence were recovered from the genomic DNA. These RT sequences show a high degree of heterogeneity characterized mainly by deletion mutation; they can be divided into three subfamilies, of which the majority encode defective RT. This is the first report of a Ty1-copiaretrotransposon in Mirabilis jalapa L. The finding could be helpful for the development of new molecular markers for genetic studies, particularly on the origin and evolutionary relationships of M. jalapa L, and the study of Ty1-copiaretrotransposons and plant genome evolution in the genus Mirabilisor family Nyctaginaceae.
APA, Harvard, Vancouver, ISO, and other styles
4

Plaza, Alberto, Heather L. Baker, and Carole A. Bewley. "Mirabilin, an Antitumor Macrolide Lactam from the Marine SpongeSiliquariaspongia mirabilis†." Journal of Natural Products 71, no. 3 (March 2008): 473–77. http://dx.doi.org/10.1021/np070603p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

THORP. "Annus Mirabilis." Princeton University Library Chronicle 54, no. 2/3 (1993): 135. http://dx.doi.org/10.2307/26403813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Swartz, Clifford E. "Aetas Mirabilis." Physics Teacher 37, no. 4 (April 1999): 198. http://dx.doi.org/10.1119/1.880223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Mirabilis." Choice Reviews Online 39, no. 05 (January 1, 2002): 39–2645. http://dx.doi.org/10.5860/choice.39-2645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Mixtura Mirabilis." Nachrichten aus Chemie und Technik 2, no. 16 (April 23, 2010): 162. http://dx.doi.org/10.1002/nadc.19540021605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Mixtura Mirabilis." Nachrichten aus Chemie und Technik 1, no. 10 (April 23, 2010): 81. http://dx.doi.org/10.1002/nadc.19530011006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Mixtura Mirabilis." Nachrichten aus Chemie und Technik 1, no. 11 (April 23, 2010): 92. http://dx.doi.org/10.1002/nadc.19530011109.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mirabilis"

1

Charles, Ian George. "Proteus mirabilis and cat." Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/35192.

Full text
Abstract:
Proteus mirabilis PM13 is a well characterized chloramphenicol-sensitive isolate which spontaneously gives rise to resistant colonies on solid media containing chloramphenicol (50ug/ml) at a plating efficiency of between 10-4 and 10-5 per cell per generation. When a chloramphenicol resistant colony is grown in liquid medium in the absence of the antibiotic for I50 generations a population of predominantly sensitive cells arises. The cat gene responsible for the phenomenon is chromosomal, and has been cloned from P.mirabilis PMI3 with DNA prepared from cells grown in the absence or the presence of chloramphenicol. Recombinant plasmids which confer resistance to chloramphenicol carry an 8.5-kb PstI fragment irrespective of the source of host DNA. The location of The cat gene within the PstI fragment was determined by Southern blotting with a cat consensus 'active - site' oligonucleotide (5'-CCATCACAGACGGCATGATG-3') corresponding to the expected amino acid sequence of the active site region of chloramphenicol acetyltransferase. DNA sequence analysis has revealed a high degree of homology between the P. mirabllls cat -gene and the type I ca-t variant (Tn9), 76% at the amino acid level and 73% when nucleotides in the coding sequence are compared. The mechanism for the appearance and disappearance of chloramphenicol resistance in P. mirabilis appears to be associated with a host-specific trans-acting element which controls cat gene expression. A precedent for such a control network is given by phase variation in Salmonella typhimurium, where an invertible DNA segment controls the transcription of a trans-acting regulatory element. A comparison of the 5' regions of the S.typhimurium flagellin genes in and H2, which are alternately expressed by a flip-flop control mechanism with the 5' region of P.mirabilis cat show blocks of homology. Whether or not this homology is significant in the regulation of cat gene expression has not been determined.
APA, Harvard, Vancouver, ISO, and other styles
2

Toptchieva, Anna A. "Tellurite resistance of Proteus mirabilis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0016/NQ49293.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Michelim, Lessandra. "Abordagem biotecnológica em Proteus mirabilis." reponame:Repositório Institucional da UCS, 2008. https://repositorio.ucs.br/handle/11338/364.

Full text
Abstract:
O gênero Proteus é caracterizado pela rápida mobilidade, fenômeno denominado swarming . Quanto à homologia de seu DNA, apresenta apenas uma discreta relação com o da Escherichia coli. Freqüentemente relacionado com infecções urinárias, facilitadas pela sua capacidade em degradar uréia, tem sido encontrado colonizando cateteres e sondas vesicais, principalmente a espécie Proteus mirabilis. Devido a sua crescente importância na prática clínica, tanto como agente infeccioso de difícil erradicação, quanto como microrganismo com possibilidade de produzir β-lactamases de espectro expandido, seu controle no ambiente hospitalar tornou-se essencial. A necessidade da correta identificação dessa bactéria estimulou com que métodos de identificação molecular sejam constantemente estudados e aprimorados para essa finalidade. Métodos baseados em PCR têm se mostrado úteis, mas precisam ser validados para a rotina laboratorial. Diversos fatores de patogenicidade, ou seja, características biológicas de Proteus que favorecem a sua participação em processos infecciosos têm sido identificados, tais como: a capacidade de mobilidade e fixação celular, produção de protease, urease e hemolisina. Diversos autores inferem que a correta co-regulação desses fatores de virulência durante a diferenciação de swarming está relacionada com a capacidade de colonizar e invadir o tecido do hospedeiro. Vários estudos sugerem que extratos vegetais podem ser importantes produtos no controle de P. mirabilis ao interferir em sinais de quorum sensing , e consequentemente, na diferenciação celular e expressão de fatores de virulência. Neste sentido, os terpenos, compostos presentes em óleos essenciais, podem representar uma alternativa viável no controle de infecções por esses microrganismos. As proteases microbianas vêm se destacando como importantes fatores de virulência devido a ação direta sobre proteínas do hospedeiro, particularmente imunoglobulinas. O estudo em P. mirabilis tem sido focalizado na protease ZapA (mirabilisina), enzima capaz de degradar IgA, IgG, entre outras proteínas. Trabalhos relatam que não somente ZapA é regulada durante o swarming , mas também hemolisinas, fatores ligados à diferenciação celular e hiperprodução do flagelo. Assim sendo, na presente tese foram avaliados distintos sistemas via PCR (RAPD, ERIC-PCR, REP-PCR, BOX-PCR e ISSR) para caracterização molecular de isolados clínicos de P. mirabilis, o efeito de monoterpenos sobre a diferenciação celular e a produção de fatores de patogenicidade dessas bactérias, e realizado um estudo bioinformático sobre o complexo de metaloproteases com base no recentemente publicado genoma de P. mirabilis.
Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-22T17:39:53Z No. of bitstreams: 1 Dissertacao Lessandra Michelim.pdf: 1136815 bytes, checksum: 25bc56ba17160011b1aba3b4e7732643 (MD5)
Made available in DSpace on 2014-05-22T17:39:53Z (GMT). No. of bitstreams: 1 Dissertacao Lessandra Michelim.pdf: 1136815 bytes, checksum: 25bc56ba17160011b1aba3b4e7732643 (MD5)
O gênero Proteus é caracterizado pela rápida mobilidade, fenômeno denominado swarming . Quanto à homologia de seu DNA, apresenta apenas uma discreta relação com o da Escherichia coli. Freqüentemente relacionado com infecções urinárias, facilitadas pela sua capacidade em degradar uréia, tem sido encontrado colonizando cateteres e sondas vesicais, principalmente a espécie Proteus mirabilis. Devido a sua crescente importância na prática clínica, tanto como agente infeccioso de difícil erradicação, quanto como microrganismo com possibilidade de produzir β-lactamases de espectro expandido, seu controle no ambiente hospitalar tornou-se essencial. A necessidade da correta identificação dessa bactéria estimulou com que métodos de identificação molecular sejam constantemente estudados e aprimorados para essa finalidade. Métodos baseados em PCR têm se mostrado úteis, mas precisam ser validados para a rotina laboratorial. Diversos fatores de patogenicidade, ou seja, características biológicas de Proteus que favorecem a sua participação em processos infecciosos têm sido identificados, tais como: a capacidade de mobilidade e fixação celular, produção de protease, urease e hemolisina. Diversos autores inferem que a correta co-regulação desses fatores de virulência durante a diferenciação de swarming está relacionada com a capacidade de colonizar e invadir o tecido do hospedeiro. Vários estudos sugerem que extratos vegetais podem ser importantes produtos no controle de P. mirabilis ao interferir em sinais de quorum sensing , e consequentemente, na diferenciação celular e expressão de fatores de virulência. Neste sentido, os terpenos, compostos presentes em óleos essenciais, podem representar uma alternativa viável no controle de infecções por esses microrganismos. As proteases microbianas vêm se destacando como importantes fatores de virulência devido a ação direta sobre proteínas do hospedeiro, particularmente imunoglobulinas. O estudo em P. mirabilis tem sido focalizado na protease ZapA (mirabilisina), enzima capaz de degradar IgA, IgG, entre outras proteínas. Trabalhos relatam que não somente ZapA é regulada durante o swarming , mas também hemolisinas, fatores ligados à diferenciação celular e hiperprodução do flagelo. Assim sendo, na presente tese foram avaliados distintos sistemas via PCR (RAPD, ERIC-PCR, REP-PCR, BOX-PCR e ISSR) para caracterização molecular de isolados clínicos de P. mirabilis, o efeito de monoterpenos sobre a diferenciação celular e a produção de fatores de patogenicidade dessas bactérias, e realizado um estudo bioinformático sobre o complexo de metaloproteases com base no recentemente publicado genoma de P. mirabilis.
APA, Harvard, Vancouver, ISO, and other styles
4

Nitzsche, Rainar. "Beutefang und "Brautgeschenk" bei der Raubspinne Pisaura mirabilis (CL.)(Araneae: Pisauridae) /." Kaiserslautern : Nitzsche, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2843137&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Walker, Cristiani Isabel Banderó. "MIRABILIS JALAPA L. Atividade Farmacológica e Citotóxica." Universidade Federal de Santa Maria, 2007. http://repositorio.ufsm.br/handle/1/5894.

Full text
Abstract:
The family Nyctaginaceae consist of approximately 30 genus and 14 species. In Brazil, 10 genus and 70 species are found. The genus Mirabilis belongs this family and can be found spread worldwide. This plant popularly known as maravilha or bonina and it is used in folk medicine to treat infection, inflammation and pain. The plant was collected in March 2006 in Santa Maria (RS). Ethanolic extract (70%) was made by maceration and fractionated using organic solvents with increasing polarity (hexanic, dichloromethane, ethyl acetate and butanolic). Through qualitative chemical analysis it was found in greater quantity alkaloids, amino groups, sterols and/or triterpenoids, hidroxiantraquinones, anthocyanic pigments, volatile acids and phenols. In relation to the antimicrobial activity, the best response was obtained for the fraction dichloromethane from stem and the ethyl acetate from leaves for S. aureus and the fraction ethyl acetate from stem and leaves for S. cerevisiae. The higher concentration of phenolic compounds was found in the ethyl acetate fraction from leaves (7,45 mg/g drug). Through the method of DPPH, all samples showed antioxidant activity by TLC and by spectrophotometry. Ethyl acetate and butanolic fractions from leaves showed excellent antioxidant activity with IC50 of 20,40 μg/ml and 25,41 μg/ml, respectively. The highest content of quercetin was found in the leaves extract (0,19%). The ethyl acetate fraction produced analgesic activity reaching 82.8±7.9% inhibition in the writhing test. The hexanic fraction from leaves expressed the best toxicity front of Artemia (LC50 = 1.27 μg/ml)
A família Nyctaginaceae compreende aproximadamente 30 gêneros e 400 espécies. No Brasil são encontrados 10 gêneros e 70 espécies. O gênero Mirabilis está inserido nesta família e encontra-se amplamente distribuído por todo o mundo. Conhecida popularmente como bonina ou maravilha, é utilizada na medicina popular para o tratamento de infecções, inflamações e dores. A planta foi coletada em março de 2006 no município de Santa Maria (RS). O extrato bruto em etanol (70%) foi preparado por maceração e fracionado com solventes orgânicos de polaridade crescente (hexano, diclorometano, acetato de etila e butanol). Através da análise química qualitativa foram encontrados em maior quantidade heterosídeos antociânicos, alcalóides, amino-grupos, ácidos voláteis, esteróides e/ou triterpenos, hidroxiantraquinonas, e fenóis. Quanto à atividade antimicrobiana, as melhores respostas obtidas foram para a fração diclorometano do caule e folhas frente a S. aureus e a fração acetato de etila do caule e das folhas frente a S. cerevisiae. A maior concentração de compostos fenólicos foi encontrada na fração acetato de etila das folhas (7,45 mg/g de droga). Através do método do DPPH, todas as amostras mostraram atividade antioxidante por CCD e pelo método espectrofotométrico, sendo que as frações acetato de etila e butanólica das folhas demonstraram excelente atividade antioxidante com CI50 de 20,40 μg/ml e 25,41 μg/ml, respectivamente. O maior teor de quercetina foi encontrado no extrato das folhas (0,19%). A fração acetato de etila apresentou a maior atividade analgésica (I% = 82.8) no teste de contorções abdominais. A fração hexânica das folhas expressou a melhor toxicidade frente a Artemia salina (CL50=1,27 μg/ml).
APA, Harvard, Vancouver, ISO, and other styles
6

Aquilini, Eleonora. "Lipopolysaccharide (LPS) core biosynthesis in "Proteus mirabilis" / Estudio de la biosíntesis del núcleo de lipopolisacarido (LPS) en "Proteus mirabilis"." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/98348.

Full text
Abstract:
Urinary tract infection (UTIs) is an extremely common disease. Proteus mirabilis is a common cause of UTI in individuals with functional or structural abnormalities or with long-term catheterization, it forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are flagella, fimbriae, outer membrane proteins, hemolysins, amino acid deaminase, protease, capsule and lipopolysaccharide (LPS). Study of LPS core is particularly relevant for several reasons: it is a conserved region, although it is increasingly clear that there is some variability at the genus or groups of similar genera, its chemical structure modulates the endotoxic activity of lipid A, alteration of the LPS core, which generates less virulent bacteria, encourages the search of substances that interfere with the biosynthesis of this region, and conserved regions of the core LPS could be useful as antigens in preventing diseases caused by pathogens that contain these conserved regions. The specific aims of this project have been to identify and functionally characterize genes involved in core LPS biosynthesis in P. mirabilis, to elucidate the mechanism of incorporation of galactosamine (GalN) to the core LPS, to identify genes coding for phosphoethanolamine (PEtN) modifications, and to characterize and to study the biological effects of the gene encoding the PEtN transferase involved in the modification of the second heptose residue (L,D-HepII). We found that P. mirabilis has most of the genes for the biosynthesis of LPS core grouped in the waa cluster in the chromosome. Despite this, additional genes required for core LPS biosynthesis are found outside the waa cluster. The pentasaccharide of the inner core, shared by all Enterobacteriaceae, is biosynthesized in P. mirabilis, by the sequential activity of a bifunctional transferase (WaaA) and three heptosyltransferases (WaaC, WaaF, and WaaQ). These enzymes are transcribed from genes located inside the waa cluster, and are conserved in P. mirabilis strains analyzed; for more, they show a high identity and similarity level to homologues proteins of Escherichia coli, Klebsiella penumoniae and Serratia marcescens. The waaL gene, coding for the O-antigen polymerase ligase, is found adjacent to the classic waa cluster. Downstream this gene, four genes encoding enzymes belonging to the 4 (walM, walN, and WalR), and 9 (walO) glycosyltransferase family were found. Even if members of these families were related to LPS core biosynthesis in several Gram-negative bacteria, in P. mirabilis they do not appear to be involved in the biosynthesis of the reported core LPS structures. The presence of the disaccharide hexosamine (HexN)-1,4-galacturonic acid (GalA) is a feature of P. mirabilis LPS outer core. Depending on the nature of the HexN outer core residue, two different homologues for N-acetyl-hexosamine transferases are present in the waa cluster: wabH or wabP. Altought the incorporation of glucosamine into LPS core requires an acetylglucosaminyltransferase (WabH) and a deacetilase (WabN), the incorporation of GalN requires three enzymes: an acetylgalactosaminyltransferase (WabP), a deacetilase (WabN) and an epimerase (gne). An amplification test with specific primers for this two different homologues can be used to predict the HexN nature in P. mirabilis LPS cores. The strain-specific genes wamB and wamC code for a galactosyltransferase and a heptosyltransferase respectively in strain R110 of P. mirabilis. The enzyme encoded by gene wamD is a N-acetylglucosaminyltransferase, and it is found in strain 51/57 of P. mirabilis. WamA, coded by wamA gene in the waa cluster of strains R110, 50/57, TG83 and HI4320, is a heptosyltransferase responsible for the incorporation of a quarter residue of heptose (Hep), in DD configuration, to the GalA II of the outer core. In P. mirabilis strain 51/57, a gene coding a protein of the Mig-14 family was identified inside the waa cluster, this localization appears to be an exception in the Enterobacteriaceae family. Inspection of the whole genome of P. mirabilis HI4320 did not allow the identification of a mig-14 similar gene. There are three putative PEtN transferases in the genome of P. mirabilis: PMI3040, PMI3576, and PMI3104. The gene identified as eptC (PMI3104) transfers the moiety of PEtN to the O-6 position of L,D-Hep II (HepII6PEtN). The absence of the positive charge due to PEtN residue doesn't affect the bacterial growth kinetics in lab conditions in rich or defined media, but causes a moderate destabilization of the outer-membrane. Despite the lack of the PEtN residue on the Hep II in P. mirabilis LPS core, has no statistically effects during urinary tract infection assays in mouse model, the absence of this modification causes an increase sensitivity to complement in non-immune human sera.
P. mirabilis no es una causa frecuente de infecciones urinarias en el huésped normal, más bien infecta el tracto urinario con alteraciones funcionales o anatómicas, o instrumentación crónica como el cateterismo. P. mirabilis está a menudo asociado con cálculos urinarios e incrustaciones de los catéteres y es, particularmente importante, en pacientes con cateterización prolongada. Las infecciones del tracto urinario asociadas a cateterización son mundialmente reconocidas como la causa más común de infección asociada a tratamientos en ambiente hospitalario. El LPS es un factor de virulencia importante en bacterias Gram negativas patógenas. También conocido como endotoxina, es una molécula glicolipídica que constituye la estructura mayoritaria de la cara externa de la membrana externa (OM). En Proteus mirabilis la mayoría de los genes responsables de la biosíntesis de núcleo de LPS están localizados en el cromosoma, en el agrupamiento génico waa. A pesar de esto, algunos genes adicionales, necesarios para la biosíntesis del núcleo de LPS, se encuentran ubicados fuera del agrupamiento génico waa. El pentasacárido del núcleo interno, común a todas las Enterobacteriáceae, se biosintetiza en P. mirabilis, por la actividad secuencial de una transferasa bifunciona (WaaA) y tres heptosiltransferasas (WaaC, WaaF, y WaaQ). La presencia del disacárido HexN‐1,4‐GalA es característica del núcleo externo de LPS en P. mirabilis. Dependiendo de la naturaleza del residuo de HexN, se encuentran, en el agrupamiento génico waa, dos HexNAc transferasas diferentes: wabH o wabP. El gen eptC (PMI3104) codifica para la enzima que transfiere el residuo de fosfoetanolamina a la posición O-6 de la L,D-Hep II (HepII6PEtN), en el núcleo de LPS de P. mirabilis. La ausencia de la carga positiva del residuo de fosfoetanolamina no afecta a la cinética de crecimiento de las bacterias en condiciones standard de laboratorio sea en medios ricos o definidos. La ausencia del residuo fosfoetanolamina provoca una desestabilización moderada de la membrana externa que se traduce en una disminución de la MIC para SDS.
APA, Harvard, Vancouver, ISO, and other styles
7

Broll, Valquiria. "Purificação e caracterização da urease recombinante de Proteus mirabilis." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/84981.

Full text
Abstract:
Ureases são metaloenzimas dependentes de níquel, amplamente distribuída em bactérias, fungos e plantas. Estas enzimas atuam na catálise da hidrólise da ureia a amônia e dióxido de carbono. Proteus mirabilis é uma bactéria patogênica, produtora de urease, um de seus mais importantes fatores de virulência. Esta bactéria Gram-negativa se comporta como um uropatógeno oportunista responsável por severas infecções em pacientes hospitalizados. A amônia liberada pela hidrólise da ureia catalisada pela urease de Proteus mirabilis (PMU) causa um aumento no pH levando à formação de microclima, possibilitando a colonização do patógeno no trato urinário do hospedeiro. A PMU apresenta alta similaridade com outras ureases, como a urease de sementes de “Jack bean” (JBU) e a urease de Helicobacter pylori (HPU), para as quais nosso grupo descreveu diversas atividades biológicas que são independentes da hidrólise de ureia. Neste trabalho, nós produzimos PMU, e logo depois investigamos se esta, assim como a JBU e a HPU, apresenta atividades não relacionadas à atividade enzimática. As condições de cultivo para expressão da PMU expressa em Escherichia coli HB101 foram otimizadas pela metodologia de superfície de resposta. Concentrações de níquel, ureia e tempos de indução foram testados. A purificação da enzima recombinante foi obtida em 3 etapas cromatográficas. A primeira, uma HiTrapQTM HP (pH 7,5) onde a urease foi eluida com 400 mMol.L-1 de KCl. O pico das frações eluídas foram reunidas, dialisadas e aplicadas na coluna HiLoad 26/10 Q-SepharoseTM HP, usando o mesmo tampão e sal para eluição. As frações ativas foram novamente reunidas e a PMU foi submetida a cromatografia de gel filtração (Superdex 200TM 26/60-pg). A PMU apresenta estabilidade na faixa de pH 7,0 a 8,5, com seu pH ótimo estimado em 8,0. Alta atividade ureolítica pode ser detectada de 37 oC a 48 oC. Diferentes soluções salinas induzem o aumento na atividade enzimática desta urease, e quanto maior o tempo de exposição, maior a tendência a este aumento. Assim como a JBU, esta urease é capaz de inibir o crescimento de leveduras, mas diferentemente desta e da HPU, a PMU não apresenta atividade inibitória sobre a germinação de esporos e o crescimento de fungos filamentosos. As ureases de P. mirabilis e de H. pylori apresentam regiões de semelhança com o peptídeo proveniente do colágeno, e de acordo com testes de modelagem, esta região estaria exposta para interação com receptores localizados nas membranas de plaquetas, visto que ambas ativam plaquetas resultando na formação de agregados.
Ureases are Ni-dependent metalloenzymes, widespread in bacteria, fungi and plants, that catalyze the hydrolysis of urea into ammonium and carbon dioxide. The pathogenic bacteria Proteus mirabilis produces urease as virulence factor. Proteus mirabilis is a Gram negative opportunistic uropathogen, which causes severe infections in hospitalized patients. Ammonia released from urea hydrolysis by Proteus mirabilis urease (PMU) increases the local pH and forms a microclimate which allows the colonization of the host urinary tract. PMU presents high similarity to other ureases, such as that from Jack bean seeds (JBU) or from Helicobacter pylori (HPU), for which our group has described biological activities unrelated to urea hydrolysis. Here we aimed to investigate whether PMU shares with JBU and HPU other properties unrelated to enzyme activity. Growth conditions of PMU-expressing Escherichia coli HB101 were optimized by response surface methodology prior to purification. Concentrations of nickel, urea, and induction time were tested. A partially purified recombinant enzyme was obtained after 3 chromatographic steps. In the first, a HiTrapQTM HP (pH 7.5), urease eluted with 400 mMol.L-1 KCl. Peak fractions were pooled, dialyzed and loaded in a HiLoad 26/10 Q-SepharoseTM HP column using same buffer and eluting salt. The active fractions were pooled and PMU was submitted to gel filtration (Superdex 200TM26/60-pg). The enzyme was stable in the range of pH 7.0 up to 8.5, with optimum pH at 8.0. The ureolitic activity is high from 37 oC up to 48 oC. Different salts increased the ureolytic activity of PMU, the longer the exposition, the higher was the increase in activity. PMU inhibited yeast growth, similarly to the effect induced by JBU. Differently from JBU and HPU, this urease did not inhibit spore germination and growth of different filamentous fungi. Ureases from P. mirabilis and H. pylori presented regions of homology with collagen, and according to modeling tests, these region are exposed to receptor recognition localized in platelets membrane, which might explain their platelet aggregating effect.
APA, Harvard, Vancouver, ISO, and other styles
8

Nitzsche, Rainar. ""Brautgeschenk" und Reproduktion bei Pisaura mirabilis, einschliesslich vergleichender Untersuchungen an Dolomedes fimbriatus und Thaumasia uncata (Araneida: Pisauridae)." Kaiserslautern Nitzsche, 1987. http://deposit.d-nb.de/cgi-bin/dokserv?id=2842652&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ossolinski, Justin Emerson. "Carbon budget analysis of the branching coral Madracis mirabilis." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 96 p, 2007. http://proquest.umi.com/pqdweb?did=1338884351&sid=14&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, Hsin-Chih. "Molecular studies on the swarming migration of Proteus mirabilis." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321393.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mirabilis"

1

Mirabilis. New York: BlueHen Books, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mirabilis. New York: BlueHen Books, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pearson, Melanie M., ed. Proteus mirabilis. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9601-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rossi, Luigi. J.P.F.: Aqua mirabilis. [Padua?]: Linea AGS, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bacigalupo, Massimo, Stefano Verdino, and Domenico Lovascio. Annus mirabilis, 1814-1815. Roma: Aracne, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baum, L. Frank. Magus mirabilis in Oz. Berkeley, Calif., USA: Scolar Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cindy, Roche ́. Wild four o'clock (Mirabilis nyctaginea (Michx.) MacM.). [Olympia, Wash.]: Washington State University Cooperative Extension, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roché, Cindy Talbott. Wild four o'clock (Mirabilis nyctaginea (Michx.) MacM.). [Olympia, Wash.]: Washington State University Cooperative Extension, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The life of Christina Mirabilis. Saskatoon, Sask: Peregrina, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Radi, Lanfranco. Hortus mirabilis: I giardini incantati. Roma: Pieraldo, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mirabilis"

1

Lim, T. K. "Mirabilis jalapa." In Edible Medicinal and Non Medicinal Plants, 497–513. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8748-2_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Douglas, Roy. "Annus Mirabilis." In World Crisis and British Decline, 1929–56, 99–113. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-18194-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sastry, K. Subramanya, Bikash Mandal, John Hammond, S. W. Scott, and R. W. Briddon. "Mirabilis spp." In Encyclopedia of Plant Viruses and Viroids, 1541–44. New Delhi: Springer India, 2019. http://dx.doi.org/10.1007/978-81-322-3912-3_593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hammer, Øyvind. "Spira Mirabilis." In The Perfect Shape, 33–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47373-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Springer, Michael. "(sic!) mirabilis." In Unendliche Neugier, 198–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54891-2_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lim, T. K. "Mirabilis expansa." In Edible Medicinal and Non-Medicinal Plants, 110–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26062-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khare, C. P. "Mirabilis jalapa Linn." In Indian Medicinal Plants, 1. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-70638-2_1023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mobley, Harry L. T. "Proteus mirabilis Overview." In Methods in Molecular Biology, 1–4. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9601-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hintikka, Jaakko, and Merrill B. Hintikka. "Wittgenstein’s Annus Mirabilis: 1929." In The Tasks of Contemporary Philosophy / Die Aufgaben der Philosophie in der Gegenwart, 437–47. Munich: J.F. Bergmann-Verlag, 1986. http://dx.doi.org/10.1007/978-3-662-30341-2_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hintikka, Jaakko. "Wittgenstein’s Annus Mirabilis: 1929." In Ludwig Wittgenstein: Half-Truths and One-and-a-Half-Truths, 107–24. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-1-4020-4109-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mirabilis"

1

Kearney, Sinead M., David J. Kinahan, and Jens Ducree. "Spira Mirabilis enhanced density gradient centrifguation." In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Granadier, Gabriela, Michela Borges, and Renata Alitto. "Ophiothela mirabilis do Brasil: uma nova linhagem geográfica?" In Congresso de Iniciação Científica UNICAMP. Universidade Estadual de Campinas, 2019. http://dx.doi.org/10.20396/revpibic2720192479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prabakharan, Sabitha, Joel M. H. Teichman, Scott S. Spore, Edmund Sabanegh, Randolph D. Glickman, and Robert J. C. McLean. "Proteus mirabilis viability after lithotripsy of struvite calculi." In BiOS 2000 The International Symposium on Biomedical Optics, edited by R. Rox Anderson, Kenneth E. Bartels, Lawrence S. Bass, C. Gaelyn Garrett, Kenton W. Gregory, Nikiforos Kollias, Harvey Lui, et al. SPIE, 2000. http://dx.doi.org/10.1117/12.386261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Omer, Lawin, Zirak Abdulrahman, and Rastee Saeed. "Curing analysis of Drug Resistance Plasmid in Proteus mirabilis." In 4th International Scientific Conference of Cihan University-Erbil on Biological Sciences. Cihan University-Erbil, 2017. http://dx.doi.org/10.24086/bios17.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kellenberger, Roman, Mathias Kneubuhler, and Tobias Kellenberger. "Spectral characterisation and mapping of Welwitschia mirabilis in Namibia." In 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009). IEEE, 2009. http://dx.doi.org/10.1109/igarss.2009.5417388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lamichhane, J., M. Fafalak, E. Bryll-Perzan, R. Bobde, and B. Bhattarai. "Proteus Mirabilis: A Rare but Dangerous Cause of Osteomyelitis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

De Marchi, L., N. Testoni, and A. Marzani. "Spira Mirabilis: a shaped piezoelectric sensor for impact localization." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Jerome P. Lynch. SPIE, 2015. http://dx.doi.org/10.1117/12.2086474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Optimization of Agricultural Waste Hydrolysis using Nepenthes mirabilis Digestive Fluids." In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Madhushika, Hewayalage Gimhani, Thilini U. Ariyadasa, and S. H. P. Gunawardena. "Decolourization of Reactive Red EXF Dye by Isolated Strain Proteus Mirabilis." In 2018 Moratuwa Engineering Research Conference (MERCon). IEEE, 2018. http://dx.doi.org/10.1109/mercon.2018.8421983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pangestu, Adika Putra, Dono Indarto, and Balgis. "Neuroglobin activator In Silico found from Mirabilis Jalapa for stroke treatment." In THE 8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: Coverage of Basic Sciences toward the World’s Sustainability Challanges. Author(s), 2018. http://dx.doi.org/10.1063/1.5062800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography