Academic literature on the topic 'MIR319C'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MIR319C.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MIR319C"

1

Hu, Ziwei, Tingting Liu, and Jiashu Cao. "Functional Similarity and Difference among Bra-MIR319 Family in Plant Development." Genes 10, no. 12 (November 21, 2019): 952. http://dx.doi.org/10.3390/genes10120952.

Full text
Abstract:
miR319 was the first plant miRNA discovered via forward genetic mutation screening. In this study, we found that miR319 family members had similar sequences but different expression patterns in Brassica campestris and Arabidopsis thaliana. RT-PCR analysis revealed that Bra-MIR319a and Bra-MIR319c had similar expression patterns and were widely expressed in plant development, whereas Bra-MIR319b could only be detected in stems. The overexpression of each Bra-MIR319 family member in Arabidopsis could inhibit cell division and function in leaf and petal morphogenesis. Bra-miR319a formed a new regulatory relationship after whole genome triplication, and Bra-MIR319a overexpressing in Arabidopsis led to the degradation of pollen content and affected the formation of intine, thereby causing pollen abortion. Our results suggest that Bra-MIR319 family members have functional similarity and difference in plant development.
APA, Harvard, Vancouver, ISO, and other styles
2

Dmitriev, Alexey A., Anna V. Kudryavtseva, Nadezhda L. Bolsheva, Alexander V. Zyablitsin, Tatiana A. Rozhmina, Natalya V. Kishlyan, George S. Krasnov, et al. "miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.)." BioMed Research International 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/4975146.

Full text
Abstract:
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390–TAS3 and GRF5, and miR393–AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.
APA, Harvard, Vancouver, ISO, and other styles
3

Gorshkov, Oleg, Tatyana Chernova, Natalia Mokshina, Natalia Gogoleva, Dmitry Suslov, Alexander Tkachenko, and Tatyana Gorshkova. "Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles." Plants 8, no. 2 (February 19, 2019): 47. http://dx.doi.org/10.3390/plants8020047.

Full text
Abstract:
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Fangli, Jingyi Qi, Xin Meng, and Weibo Jin. "miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29." Plant Science 300 (November 2020): 110610. http://dx.doi.org/10.1016/j.plantsci.2020.110610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dmitriev, Alexey A., Anna V. Kudryavtseva, Nadezhda L. Bolsheva, Alexander V. Zyablitsin, Tatiana A. Rozhmina, Natalya V. Kishlyan, George S. Krasnov, et al. "Erratum to “miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax (Linum usitatissimum L.)”." BioMed Research International 2017 (2017): 1. http://dx.doi.org/10.1155/2017/6915898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Bo, Yutong Kang, Jingtong Leng, and Qijiang Xu. "Genome-Wide Analysis of the miRNA–mRNAs Network Involved in Cold Tolerance in Populus simonii × P. nigra." Genes 10, no. 6 (June 5, 2019): 430. http://dx.doi.org/10.3390/genes10060430.

Full text
Abstract:
Background: Cold tolerance is important for plants’ geographical distribution and survival in extreme seasonal variations of climate. However, Populus simonii × P. nigra shows wide adaptability and strong cold resistance. Transcriptional and post-transcriptional regulation of cold-responsive genes is crucial for cold tolerance in plants. To understand the roles of regulatory RNAs under cold induction in Populus simonii × P. nigra, we constructed cDNA and small RNA libraries from leaf buds treated or not with −4 °C for 8 h for analysis. Results: Through high-throughput sequencing and differential expression analysis, 61 miRNAs and 1229 DEGs were identified under cold induction condition in Populus simonii × P. nigra. The result showed that miR167a, miR1450, miR319a, miR395b, miR393a-5p, miR408-5p, and miR168a-5p were downregulated, whereas transcription level of miR172a increased under the cold treatment. Thirty-one phased-siRNA were also obtained (reads ≥ 4) and some of them proceeded from TAS3 loci. Analysis of the differentially expressed genes (DEGs) showed that transcription factor genes such as Cluster-15451.2 (putative MYB), Cluster-16493.29872 (putative bZIP), Cluster-16493.29175 (putative SBP), and Cluster-1378.1 (putative ARF) were differentially expressed in cold treated and untreated plantlets of Populus simonii × P. nigra. Integrated analysis of miRNAs and transcriptome showed miR319, miR159, miR167, miR395, miR390, and miR172 and their target genes, including MYB, SBP, bZIP, ARF, LHW, and ATL, were predicted to be involved in ARF pathway, SPL pathway, DnaJ related photosystem II, and LRR receptor kinase, and many of them are known to resist chilling injury. Particularly, a sophisticated regulatory model including miRNAs, phasiRNAs, and targets of them was set up. Conclusions: Integrated analysis of miRNAs and transcriptome uncovered the complicated regulation of the tolerance of cold in Populus simonii × P. nigra. MiRNAs, phasiRNAs, and gene-encoded transcription factors were characterized at a whole genome level and their expression patterns were proved to be complementary. This work lays a foundation for further research of the pathway of sRNAs and regulatory factors involved in cold tolerance.
APA, Harvard, Vancouver, ISO, and other styles
7

Fei, Yongjun, Caroline Luo, and Wei Tang. "Differential expression of microRNAs during root formation in Taxus chinensis var. mairei cultivars." Open Life Sciences 14, no. 1 (April 6, 2019): 97–109. http://dx.doi.org/10.1515/biol-2019-0011.

Full text
Abstract:
AbstractMicroRNAs (miRNAs) have been shown to play key roles in the regulation of plant growth and development by modifying the expression of their target genes. However, the influence of miRNAs on root formation and development in woody plants, such as Taxus chinensis, remains largely unknown. In the current study, we explored the phytohormone-response and nutrition-response miRNA expression profiles during T. chinensis rooting by quantitative real-time PCR (qPCR). We identified six phytohormone-response miRNAs, namely, miR164a, miR165, miR167a, miR171b, miR319, and miR391, and eight nutrition-response miRNAs, namely, miR169b, miR395a, miR399c, miR408, miR826, miR827, miR857, and miR2111a, that were differentially expressed at different rooting phases of T. chinensis. Using northern blot analysis of the putative target genes of these miRNAs, we detected the relative gene expression changes of the target genes. Taken together, our results suggest that miRNAs are involved in root formation of T. chinensis and that miRNAs may play important regulatory roles in primary root, crown root, and root hair formation by targeting phytohormone and/or nutrition response genes in T. chinensis. For the first time, these results expand our understanding of the molecular mechanisms of plant root formation and development in a conifer species.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Shengrui, Xiaozeng Mi, Ran Zhang, Yanlin An, Qiying Zhou, Tianyuan Yang, Xiaobo Xia, Rui Guo, Xuewen Wang, and Chaoling Wei. "Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis)." Planta 250, no. 4 (June 6, 2019): 1111–29. http://dx.doi.org/10.1007/s00425-019-03207-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Pan, Quanqing Li, Weiqing Liang, Yijuan Hu, Rubing Chen, Kelang Lou, Lianghui Zhan, Xiaojun Wu, and Jinbao Pu. "A tissue-specific profile of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia lactiflora Pall. by transcriptome, small RNAs and degradome sequencing." PLOS ONE 18, no. 1 (January 26, 2023): e0279992. http://dx.doi.org/10.1371/journal.pone.0279992.

Full text
Abstract:
Paeonia lactiflora Pall. (Paeonia) has aroused many concerns due to its extensive medicinal value, in which monoterpene glucoside paeoniflorin and its derivatives are the active chemical components. However, little is known in the molecular mechanism of monoterpenoids biosynthesis, and the regulation network between small RNAs and mRNAs in monoterpenoids biosynthesis has not been investigated yet. Herein, we attempted to reveal the tissue-specific regulation network of miRNAs and their targets related to paeoniaflorin and monoterpenoids biosynthesis in Paeonia by combining mRNA and miRNA expression data with degradome analysis. In all, 289 miRNAs and 30177 unigenes were identified, of which nine miRNAs from seven miRNA families including miR396, miR393, miR835, miR1144, miR3638, miR5794 and miR9555 were verified as monoterpenoids biosynthesis-related miRNAs by degradome sequencing. Moreover, the co-expression network analysis showed that four monoterpenoids-regulating TFs, namely AP2, MYBC1, SPL12 and TCP2, were putatively regulated by five miRNAs including miR172, miR828, miR858, miR156 and miR319, respectively. The present study will improve our knowledge of the molecular mechanisms of the paeoniaflorin and monoterpenoids biosynthesis mediated by miRNA to a new level, and provide a valuable resource for further study on Paeonia.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Hansheng, Yuling Lin, Xiaohui Chen, Yu Bai, Congqiao Wang, Xiaoping Xu, Yun Wang, and Zhongxiong Lai. "Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli." PLOS ONE 13, no. 1 (January 30, 2018): e0191444. http://dx.doi.org/10.1371/journal.pone.0191444.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "MIR319C"

1

Rosa-Santos, Thiago Mateus. "Expressão diferencial dos microRNAs miR319 e miR397 em cana-de-açúcar infectada por Xanthomonas albilineans /." Jaboticabal, 2017. http://hdl.handle.net/11449/151240.

Full text
Abstract:
Orientador: Sonia Marli Zingaretti
Banca: Tiago Antunes Paz
Banca: Janete Apparecida Desiderio
Resumo: A cana-de-açúcar é acometida por uma doença conhecida por "escaldadura das folhas" causada pela bactéria colonizadora do xilema Xanthomonas albilineans, considerada uma das principais doenças que atingem a cultura da canade-açúcar. A sintomatologia na fase crônica se caracteriza, principalmente, pelo aparecimento de uma faixa branca ao lado da nervura central da folha, a qual evolui para clorose total causando a morte da planta. Uma vez que o patógeno pode ser transmitido de várias maneiras, o seu controle demanda altos custos. Desta maneira, o desenvolvimento de cultivares tolerantes é uma boa opção para o controle efetivo da doença. A tolerância e sensibilidade das plantas aos fatores bióticos está relacionada com a expressão de genes, e dentre estes, os miRNAs (incluindo o miR397 e o miR319) têm sido relatados como importantes reguladores em vários mecanismos de resposta das plantas. O objetivo deste trabalho foi analisar a expressão de dois miRNAs (miR319 e miR397) em duas cultivares de cana-de-açúcar (RB86-7515 - tolerante e SP78-4467 - suscetível), infectadas por uma linhagem de X. albilineans (IACXa11), considerada a mais virulenta do Brasil. Para isto, as plantas foram cultivadas em vasos, inoculadas com X. albilineans e mantidas em casa de vegetação. Amostras de folhas e colmos foram coletadas em cinco períodos (24, 72, 144, 360 e 720 h) e a expressão dos miRNAs foi analisada pela técnica de Stem-loop RT-qPCR. Os miR397 e miR319 apresentaram-se diferencialmente expre... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Sugarcane is affected by a disease known as "leaf scald" caused by the bacterium Xanthomonas albilineans, which colonizes the xylem. This disease is one of the most important for sugarcane culture. The chronic phase is mainly characterized by the white band emergence along the central leaf vein, which causes total chlorosis of the leaf and plant death. Since the pathogen can be transmitted in many ways, his control demands high costs, and the development of tolerant cultivars is a good option for disease control. The plant tolerance and sensitivity to biotic factors is related to gene expression, and among these, the miRNAs (including miR397 and miR319), have been reported as important regulators in various plant response mechanisms. The aim of this work was to analyze the expression of two miRNAs (miR319 and miR397) in two sugarcane cultivars (RB86-7515 - tolerant, and SP78- 4467 - susceptible), infected by a strain of X. albilineans (IACXa11), the most virulent in Brazil. The plants were grown in vases, inoculated with X. albilineans and kept in a greenhouse. Samples of leaves and stems were collected in five periods (24, 72, 144, 360, and 720 h), and the miRNA expression was analyzed by Stem-loop RT-qPCR. The miR397 and miR319 expression were different between cultivars and tissues. In the susceptible cultivar (SP78-4467), during the first infection periods (24, 72 and 144 h), there was a late defense response when compared to the tolerant cultivar (RB86-7515). The miR319 presented the same expression profile in leaves and stems of the cultivar RB86-7515 (tolerant), suggesting that the pathogen recognition and defense mechanisms activation were modulated in both tissues. In general, miRNAs analyzes demonstrated that miR397 expression is lower when compared to miR319. The sa... (Complete abstract click electronic access below)
Mestre
APA, Harvard, Vancouver, ISO, and other styles
2

Rosa-Santos, Thiago Mateus [UNESP]. "Expressão diferencial dos microRNAs miR319 e miR397 em cana-de-açúcar infectada por Xanthomonas albilineans." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151240.

Full text
Abstract:
Submitted by THIAGO MATEUS ROSA DOS SANTOS null (thiagomateusrp@gmail.com) on 2017-07-28T16:24:35Z No. of bitstreams: 1 Dissertação_Thiago_Mateus_Rosa_Santos.pdf: 2449824 bytes, checksum: 8934ae7010672e8bf2342056d81d2899 (MD5)
Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-08-01T20:00:27Z (GMT) No. of bitstreams: 1 rosasantos_tm_me_jabo.pdf: 2449824 bytes, checksum: 8934ae7010672e8bf2342056d81d2899 (MD5)
Made available in DSpace on 2017-08-01T20:00:27Z (GMT). No. of bitstreams: 1 rosasantos_tm_me_jabo.pdf: 2449824 bytes, checksum: 8934ae7010672e8bf2342056d81d2899 (MD5) Previous issue date: 2017-05-03
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A cana-de-açúcar é acometida por uma doença conhecida por “escaldadura das folhas” causada pela bactéria colonizadora do xilema Xanthomonas albilineans, considerada uma das principais doenças que atingem a cultura da canade-açúcar. A sintomatologia na fase crônica se caracteriza, principalmente, pelo aparecimento de uma faixa branca ao lado da nervura central da folha, a qual evolui para clorose total causando a morte da planta. Uma vez que o patógeno pode ser transmitido de várias maneiras, o seu controle demanda altos custos. Desta maneira, o desenvolvimento de cultivares tolerantes é uma boa opção para o controle efetivo da doença. A tolerância e sensibilidade das plantas aos fatores bióticos está relacionada com a expressão de genes, e dentre estes, os miRNAs (incluindo o miR397 e o miR319) têm sido relatados como importantes reguladores em vários mecanismos de resposta das plantas. O objetivo deste trabalho foi analisar a expressão de dois miRNAs (miR319 e miR397) em duas cultivares de cana-de-açúcar (RB86-7515 - tolerante e SP78-4467 - suscetível), infectadas por uma linhagem de X. albilineans (IACXa11), considerada a mais virulenta do Brasil. Para isto, as plantas foram cultivadas em vasos, inoculadas com X. albilineans e mantidas em casa de vegetação. Amostras de folhas e colmos foram coletadas em cinco períodos (24, 72, 144, 360 e 720 h) e a expressão dos miRNAs foi analisada pela técnica de Stem-loop RT-qPCR. Os miR397 e miR319 apresentaram-se diferencialmente expressos nas cultivares e entre os tecidos. Na cultivar suscetível (SP78-4467), durante os primeiros períodos de infecção (24, 72 e 144 h), houve uma resposta tardia de defesa quando comparada com a cultivar tolerante (RB86-7515). O miR319 apresentou o mesmo perfil de expressão em folhas e colmos da cultivar RB86-7515 (tolerante), sugerindo que o reconhecimento do patógeno e a ativação dos mecanismos de defesa são modulados em ambos os tecidos. De maneira geral, as análises dos miRNAs demonstraram que a expressão do miR397 é menor quando comparada com o miR319. O mesmo padrão foi observado para os seus respectivos genes alvo. O miR397 regula a enzima lacase, importante na biossíntese de lignina. A repressão deste miRNA aumentaria a lignificação, sugerindo um mecanismo estrutural de resposta. O miR319 regula os fatores de transcrição (FTs) MYB e TCP, os quais são responsáveis pela sinalização de ácido abscísico (ABA) e ácido jasmônico (JA). A repressão destes hormônios vegetais desencadeia a sinalização por ácido salicílico (SA), o qual é responsável pela defesa contra patógenos hemibiotróficos, tal como X. albilineans.
Sugarcane is affected by a disease known as "leaf scald" caused by the bacterium Xanthomonas albilineans, which colonizes the xylem. This disease is one of the most important for sugarcane culture. The chronic phase is mainly characterized by the white band emergence along the central leaf vein, which causes total chlorosis of the leaf and plant death. Since the pathogen can be transmitted in many ways, his control demands high costs, and the development of tolerant cultivars is a good option for disease control. The plant tolerance and sensitivity to biotic factors is related to gene expression, and among these, the miRNAs (including miR397 and miR319), have been reported as important regulators in various plant response mechanisms. The aim of this work was to analyze the expression of two miRNAs (miR319 and miR397) in two sugarcane cultivars (RB86-7515 – tolerant, and SP78- 4467 - susceptible), infected by a strain of X. albilineans (IACXa11), the most virulent in Brazil. The plants were grown in vases, inoculated with X. albilineans and kept in a greenhouse. Samples of leaves and stems were collected in five periods (24, 72, 144, 360, and 720 h), and the miRNA expression was analyzed by Stem-loop RT-qPCR. The miR397 and miR319 expression were different between cultivars and tissues. In the susceptible cultivar (SP78-4467), during the first infection periods (24, 72 and 144 h), there was a late defense response when compared to the tolerant cultivar (RB86-7515). The miR319 presented the same expression profile in leaves and stems of the cultivar RB86-7515 (tolerant), suggesting that the pathogen recognition and defense mechanisms activation were modulated in both tissues. In general, miRNAs analyzes demonstrated that miR397 expression is lower when compared to miR319. The same pattern was observed for their respective target genes. The miR397 is a laccase regulator, important in lignin biosynthesis. Repression of this miRNA would increase lignification, suggesting a structural mechanism of response. The miR319 regulates the transcription factors (TFs) MYB and TCP, which are responsible for the abscisic acid (ABA) and jasmonic acid (JA) signaling. The repression of these plant hormones triggers salicylic acid (SA) signaling pathway, which is responsible for the defense against hemibiotrophic pathogens, such as X. albilineans.
CNPq: 153785/2014-4
APA, Harvard, Vancouver, ISO, and other styles
3

Etemadi-Shalamzari, Mohammad. "Involvement of auxin in the arbuscular mycorrhizal symbiosis." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/13533/1/etemadi-shalamzari.pdf.

Full text
Abstract:
Most land plant species live in symbiosis with arbuscular mycorrhizal (AM) fungi. This is a very ancient symbiosis dating back to 450 million years. AM fungi are soil fungi that belong to the Glomeromycota. They are present in most terrestrial ecosystems. Thus they can be considered as an integral root component of plants. They form essential functional structures called arbuscules in root cortical cells at which mineral nutrients are released to the plant in exchange of sugars. The phytohormone auxin is involved in many developmental processes in plants, including apical dominance, tropisms, vascular patterning and lateral root formation. The main objective of our work was to investigate further the role of auxin in the mycorrhizal developmental process. We already know that AM symbiosis stimulates the lateral root formation in host plants, which could be due to modification of auxin metabolism, transport or perception. The microRNAs (miRNAs) are ~21-nucleotides noncoding RNAs that target corresponding mRNA transcripts for cleavage and transcriptional repression. Several miRNAs interact with auxin signaling and among them miR393 that targets auxin receptors. We investigated the role of miR393 in AM root colonization. In Solanum lycopersicum (Solanaceae), Medicago truncatula (Fabaceae) and Oryza sativa (Poaceae), expression of the precursors of the miR393 was down-regulated during mycorrhization. In addition DR5-GUS, a reporter for auxin response, was found to be preferentially expressed in root cells containing arbuscules. By over-expressing miR393 in roots and therefore down-regulating auxin receptor genes, arbuscules could not develop normally. As components of auxin receptor complexes, Aux/IAA proteins play a major role in auxin signaling pathway by repressing the activity of ARF type transcription factors. We checked the expression of 25 AUX/IAA genes in AM roots. Among them, we focused on IAA27 that was significantly up-regulated during the early stages of AM symbiosis. IAA27 down-regulation in plants led to a strong decrease of AM colonization and arbuscule abundance. We showed by different approaches that the positive regulation of mycorrhization by IAA27 was linked to strigolactone biosynthesis. Overall these results strongly support the hypothesis that auxin signaling plays an important role both in the early stage of mycorrhization and in the arbuscule formation.
APA, Harvard, Vancouver, ISO, and other styles
4

Jouannet, Virginie. "Cell biology and role of TAS3-derived trans-acting small interfering RNA during Arabidopsis thaliana development." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112002.

Full text
Abstract:
L'interférence ARN est un ensemble de mécanismes de régulation essentiel pour denombreux processus au cours du développement. Ces mécanismes sont caractérisés par lʼinhibition séquence-spécifique de lʼexpression de gènes via lʼaction de petites molécules dʼARN. Parmi les différentes voies de l'interférence ARN, la voie des trans-acting siRNAs dérivés du précurseurTAS3,qui combine des caractéristiques des voies des miRNAs et siRNAs, est spécifique des plantes et en contrôle divers aspects essentiels du développement. Dans cette voie, AGO7, un membre de la famille des protéines ARGONAUTE, interagit spécifiquement avec miR390 pour cibler et cliver le transcrit TAS3 amorçant ainsi la production de tasiARFs par lʼaction de SGS3, RDR6 et DCL4. Cette voie est conservée chez toutes les plantes terrestres. Par leur activité de répression sur des membres des facteurs de réponse à l'auxine ARF2, ARF3 et ARF4, les tasiARFS contrôlent la transition de phase et la régionalisation des feuilles. Notre laboratoire et dʼautres ont montré que TAS3 était également exprimé dans la racine dʼArabidopsis, posant la question du rôle joué par la voie TAS3dans le développement des racines. Nous avons établi que la voie TAS3, par lʼaction des tasiARFs, joue un rôle essentiel dans le contrôle de la croissance des racines latérales. Nous avons démontré que la voie TAS3 agit en aval de lʼauxine pour maintenir la correcte zone et abondance des facteurs de réponse à l'auxine, ARF2, ARF3 et ARF4. De plus nous avons élucidé un ensemble complexe de rétroactions de ces ARFs sur lʼexpression de miR390. Bien que les mécanismes de la voie TAS3 ont été identifié par divers screen génétiques, notre connaissance de lʼorganisation subcellulaire de cette voie reste essentiellement méconnue. Pour cette raison, nous avons choisi dʼétudier la localisation subcellulaire de la voie TAS3, en nous focalisant sur AGO7 qui en constitue un composant spécifique. Nous avons montré que AGO7, RDR6 et SGS3 sʼaccumulent dans des focicytoplasmiques spécifiques, les siRNA bodies. Nous avons observé une colocalisation entre cessiRNA bodies et des marqueurs des stress granules ainsi qu'une protéine virale associée aux membranes. Finalement nous avons démontré lʼimportance de la localisation cytoplasmique dʼAGO7pour la biogenèse des tasiARFs. Notre travail a permis de mieux comprendre les mécanismes de lʼaction de la voie TAS3 au cours du développement dʼArabidopsis
RNA silencing is a regulatory mechanism essential for many processes during development. This mechanism is characterized by the sequence-specific inhibition of gene expression by small RNA molecules. Among the several pathways of RNA silencing, the TAS3 trans-acting small interfering RNA (ta-siRNA) pathway, which combines features of both micro (mi)RNA and siRNA pathways, is unique to plants and controls several key aspects of plant development. In this pathwayAGO7, a member of the ARGONAUTE family of RNAse, interacts specifically with miR390 to target and cut the TAS3 transcript, priming it for production of tasiARFs by SGS3, RDR6 and DCL4 action. This pathway is conserved across all land plants. By their repressing activity on Auxin Response Factors members, ARF2, ARF3 and ARF4, the tasiARFs control phase change and leaf patterning. Our lab and others have shown that TAS3 is also expressed in the root of Arabidopsis, raising the question of the role played by the TAS3 pathway in root development. We have shown that theTAS3 pathway, through the tasiARFs action, plays an essential role in the control of lateral rootgrowth. We have demonstrated that the TAS3 pathway acts downstream of auxin, to maintain the proper zonation and abundance of the Auxin Response Factors ARF2, ARF3 and ARF4. In addition,we unravelled a complex set of feedbacks of these ARFs on miR390 expression. Although the mechanisms of TAS3 processing have been identified through various genetic screens our knowledge of the subcellular organization of this pathway remains essentially unknown. For this reason we have chosen to study the subcellular localization of the TAS3 pathway, and focused on AGO7 which represents a specific element of this pathway. We have shown that AGO7, RDR6 and SGS3 accumulate in cytoplasmic foci, dubbed siRNA bodies. We have observed colocalization between these siRNA bodies and markers of the stress granules and a membrane-associated viral protein. Finally we have demonstrated the functional relevance of the cytoplasmic localization of AGO7 for the biogenesis of tasiARFs. Our work has led to a better understanding of the mechanisms underlying the action the TAS3 pathway during the development of Arabidopsis
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Sheng [Verfasser], and Philipp [Akademischer Betreuer] Erben. "ANLN, TLE2 and MIR31HG transcripts in muscle invasive bladder cancer: a functional and clinical analysis based on molecular subtypes / Sheng Wu ; Betreuer: Philipp Erben." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1222517604/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lackinger, Martin [Verfasser], and Gerhard [Akademischer Betreuer] Schratt. "Loss of the miR379-410 cluster in mice leads to alterations in social and anxiety-related behaviours / Martin Lackinger ; Betreuer: Gerhard Schratt." Marburg : Philipps-Universität Marburg, 2019. http://d-nb.info/1187443581/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alanga, Naveen Shankar. "Transcriptional regulation of a microRNA encoding gene MIR319C during leaf development in Arabidopsis thaliana." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5958.

Full text
Abstract:
The evolutionarily conserved microRNA miR319 and its target transcription factors encoded by five CIN-TCPs (TCP2, 3, 4, 10 & 24) regulate leaf morphogenesis in Arabidopsis by triggering the division to differentiation switch of the leaf cells. In a young leaf, the expression of the miR319 encoding gene MIR319C is restricted at the basal region coinciding with the cell proliferation zone, whereas the CIN-TCP transcripts are detected in the more distal region where differentiation is initiated. How the complementary expression patterns of MIR319C and CIN-TCPs are established in leaf primordia is unknown. Moreover, the factors that activate and maintain MIR319C expression in the leaf primordia are yet to be uncovered. Here, a detailed spatiotemporal analysis of the predominantly expressed TCP4 and MIR319C genes suggested the possibility of CIN-TCP mediated downregulation of MIR319C promoter activity in the leaf primordia. Loss of multiple CIN-TCPs resulted in the distal extension of the MIR319C expression domain, whereas ectopic TCP4 activity restricted the MIR319C domain more proximally. TCP4 was enriched at the MIR319C promoter, and increased TCP4 activity enhanced the deposition of H3K27me3 repressive marks on the MIR319C. Additionally, transgenic lines carrying mutations in TCP binding sites on MIR319C promoter exhibited miR319 overexpression phenotypes. Together with the previous knowledge that miR319 degrades CIN-TCP transcripts, our study suggests the existence of a double-negative feedback loop involving the miR319-CIN-TCP module in regulating leaf morphogenesis in Arabidopsis. To uncover the activators of MIR319C in leaf primordia, we screened a leaf-specific Arabidopsis transcription factor (TF) library using a yeast one-hybrid assay to isolate proteins that bind to the 2.7 kb promoter of MIR319C. The screen yielded 57 positives including the six NAM/ATAF1/ATAF2/CUC (NAC) domain-containing TFs with DNA-binding preferences similar to that of the CUC sub-group of NAC TFs, i.e., CUC1, 2 & 3. In addition to the ability of the CUC proteins to bind to the MIR319C promoter region in yeast, the expression domain of CUC2 overlaps with that of MIR319C in early leaf primordia, suggesting a role for CUCs in the activation of MIR319C during leaf development. Loss of CUC2 activity significantly reduced the MIR319C expression domain, whereas increased CUC2 level led to a distal expansion of MIR319C expression. Elevated CUC2 level partly rescued the TCP4-mediated suppression of MIR319C expression suggesting that CUC2 and TCP4 interact to establish the domain of MIR319C expression in leaf primordia. Thus, we have identified CUCs as the activators of MIR319C in the leaf primordia. In conclusion, we propose a model where the CUC proteins initially activate MIR319C throughout early leaf primordia. As development progresses, the CIN-TCP genes are expressed towards the distal end of the primordia by the action of yet unidentified factors, and the onset of CIN-TCP activity results in the downregulation of MIR319C transcription in the distal primordia, possibly by recruiting chromatin modifiers. Strong CUC activity at the base sustains MIR319C expression in the proximal region, where CIN-TCP transcripts are degraded by mature miR319. Thus, our study provides evidence that a CUC-MIR319C-CIN-TCP module patterns a uniformly growing leaf primordium into the proximal and the distal growth domains, where the cells in the basal region continue to divide and grow, whereas cells in the distal region stop dividing and start differentiating.
APA, Harvard, Vancouver, ISO, and other styles
8

Hung, Wan-Wen, and 洪琬雯. "Investigation of the Functional Roles of Long Non-Coding RNA MIR31HG in Oral Oncogenesis." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/p382uj.

Full text
Abstract:
碩士
國立陽明大學
口腔生物研究所
107
Oral squamous cell carcinoma ranks eighth in cancer incidence worldwide. Protein-coding DNA makes up 2% of the human genome, while the most of other transcripts are non-coding RNA. Non-coding RNAs can be divided into small non-coding RNAs and long non-coding RNAs. Long non-coding RNAs are defined as transcripts longer than 200 nucleotides that are not translated into protein. MIR31HG is a host gene of miR-31. MIR31HG promotes cell proliferation, invasion, and metastasis in breast, lung adenocarcinoma, and pancreatic ductal adenocarcinoma. Previous study showed that MIR31HG overexpression in OSCC. However, the functions of MIR31HG in OSCC remain unclear. To investigate the role of MIR31HG in oral cancer, MIR31HG overexpression stable lines have been established. We found that MIR31HG promoted the proliferation, migration, invasion and anchorage independent colony formation in OSCC cells. To elucidate the genes regulated by MIR31HG, some candidate genes have been identified from RNA sequencing results. The relationships of these genes with MIR31HG were verified by q-PCR and western blotting. It was confirmed that BMP2, MMP1 and LBH might be downstream genes of MIR31HG. Our study found that the expression levels of BMP2 and MMP1 were positive correlated with MIR31HG. However, the LBH levels were down regulated by MIR31HG.
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, Mainak Das. "Developmental Basis and Diversity of Polar Growth Patterns in Leaves." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3235.

Full text
Abstract:
Growth polarity in leaves – a final discussion Insights into the growth processes of leaf lamina have come from studies on several species including Arabidopsis, Antirrhinum, tobacco and maize. A feature common to the growth of leaf in these distantly related species is the existence of a pronounced growth gradient in the proximo-distal axis -growth at the tip (distal part) is arrested at an early stage while the basal region (proximal part) continues to grow for the longest duration. This is because the cell division is arrested first at the tip at an early stage of development and the arrest progressively spreads towards the base. Along with the strong proximo-distal growth gradient, a milder growth gradient also exists in the medio-lateral axis, such that the cell division arrest travels slightly faster on the leaf margins imparting an overall convex shape to the arrest front. The temporal and spatial progression of the arrest front has not only been implicated in shaping up of a leaf but is also of paramount importance in the maintenance of a flat surface during leaf growth. Although the patterning mechanisms described above seem to operate during leaf growth in many6 species, the molecular mechanisms governing these processes is still in its infancy. Moreover, patterning of leaf growth has been studied only in a handful of model species and, therefore, the information from the vast body of natural variation remains neglected. Proximo-distal growth patterning by CINCINNATA Mutant leaves with altered rates or shapes of the arrest front progression deviate significantly from the normal shape and overall flat structure. Mutation in the CIN gene in Antirrhinum and its orthologues in Arabidopsis cause buckling of the leaf due to excess cell proliferation, which in turn is caused by a delayed progression of the arrest front. CIN-like genes code for TCP transcription factors and are expressed in a broad zone of a growing leaf somewhat distal to the proliferation zone. Even though several direct and indirect targets of CIN-like genes have been identified in various plant species, their role in regulating leaf maturity and surface curvature has remained unclear. The comparison of global transcription profile of wild type and cincinnata mutant of Antirrhinum showed that the expression of genes involved in either signaling or biosynthesis of the major growth hormones were altered in the mutant. By combining DNA-protein interaction, expression analysis, chromatin immuno-precipitation and RNA in situ hybridization, we show that CIN maintains surface flatness by regulating the signaling or level of major plant hormones in developing leaves. CIN promotes cytokinin signaling by directly binding to and thereby promoting the expression of a cytokinin receptor, AmHK4, in a spatio¬temporal manner. Furthermore, it also seems to affect GA level indirectly in young leaves by regulating the spatio-temporal as well as levels of GA-biosynthetic and GA-degrading enzymes. Thus, CIN seems to accelerate maturity in leaf cells along the tip-to-base direction through its effect on the cytokinin and GA signaling pathways. In addition, CIN suppresses auxin signaling more at the margin than in the centre by establishing a margin-to-medial expression gradient of a homologue of the auxin suppressor IAA3, thereby suppressing excess cell proliferation on the margin. Our results uncover an underlying mechanism in a developing leaf that controls curvature of the leaf surface by promotion of timely exit from cell proliferation in the proximo-distal as well as the medio-lateral axes via multiple hormone pathways. Divergent growth polarities in the proximo-distal axis of leaves The morphogenetic gradient in the proximo-distal axis of a leaf is brought about by the dynamic expression of several heterochronic regulators which can include TCP and GRF classes of transcription factors. Interestingly, many of these transcription factors are also regulated post-transcriptionally by micro RNAs. In case of the studied model species, these factors seem to be associated with basipetal growth. The early arrest in cell proliferation at the tip and continued cell division at the base has served as a paradigm in studying leaf growth and has been used to conceptualize the growth of leaves with different shapes. However, the possibility of the existence of different patterning mechanisms during leaf growth in the highly diverse plant kingdom remains unexplored. Our survey of leaf growth patterns in 75 dicot species reveals the existence of four distinct proximo-distal polarities in growth patterns. Using the law of simple allometry, we also show that the differentially growing regions of leaves bear a constant relationship between them during growth. A combination of cell-size studies, histochemical staining and expression analysis reveals a strong correlation among growth pattern, cell size and the cell proliferation status. The cell size studies also indicate that there is a wide variation in the final cell sizes of leaves and the relative contribution of cell division and cell expansion to the final leaf size can be highly variable. Furthermore, we find that the varying growth patterns are linked to changes in the expression pattern of miR396, which controls the expression pattern of cell division regulatory transcription factors, the GRFs. Mis-expressing miR396 at the base of the young Arabidopsis leaf caused an early exit from cell division while reducing the expression of the miR396 at the tip allowed cell division to continue for a longer duration near the tip. Our results demonstrate that leaves with similar shapes can be differently patterned and that this divergent patterning is linked to the expression differences in the regulatory micro RNA, miR396 In conclusion, this study shows that regulators like CIN maintain surface flatness of the Antirrhinum leaf during growth by promoting timely exit from cell division along the proximo-distal and the medio-lateral axes; and it does so by regulating multiple hormone pathways. Although the basic mechanism of patterned cell division and differentiation seems to be conserved among species, the polarities of growth can vary. The variability in the growth polarities could be brought about by changes in the trans-regulation or cis-regulatory changes in the patterning genes.
APA, Harvard, Vancouver, ISO, and other styles
10

Gupta, Mainak Das. "Developmental Basis and Diversity of Polar Growth Patterns in Leaves." Thesis, 2012. http://hdl.handle.net/2005/3235.

Full text
Abstract:
Growth polarity in leaves – a final discussion Insights into the growth processes of leaf lamina have come from studies on several species including Arabidopsis, Antirrhinum, tobacco and maize. A feature common to the growth of leaf in these distantly related species is the existence of a pronounced growth gradient in the proximo-distal axis -growth at the tip (distal part) is arrested at an early stage while the basal region (proximal part) continues to grow for the longest duration. This is because the cell division is arrested first at the tip at an early stage of development and the arrest progressively spreads towards the base. Along with the strong proximo-distal growth gradient, a milder growth gradient also exists in the medio-lateral axis, such that the cell division arrest travels slightly faster on the leaf margins imparting an overall convex shape to the arrest front. The temporal and spatial progression of the arrest front has not only been implicated in shaping up of a leaf but is also of paramount importance in the maintenance of a flat surface during leaf growth. Although the patterning mechanisms described above seem to operate during leaf growth in many6 species, the molecular mechanisms governing these processes is still in its infancy. Moreover, patterning of leaf growth has been studied only in a handful of model species and, therefore, the information from the vast body of natural variation remains neglected. Proximo-distal growth patterning by CINCINNATA Mutant leaves with altered rates or shapes of the arrest front progression deviate significantly from the normal shape and overall flat structure. Mutation in the CIN gene in Antirrhinum and its orthologues in Arabidopsis cause buckling of the leaf due to excess cell proliferation, which in turn is caused by a delayed progression of the arrest front. CIN-like genes code for TCP transcription factors and are expressed in a broad zone of a growing leaf somewhat distal to the proliferation zone. Even though several direct and indirect targets of CIN-like genes have been identified in various plant species, their role in regulating leaf maturity and surface curvature has remained unclear. The comparison of global transcription profile of wild type and cincinnata mutant of Antirrhinum showed that the expression of genes involved in either signaling or biosynthesis of the major growth hormones were altered in the mutant. By combining DNA-protein interaction, expression analysis, chromatin immuno-precipitation and RNA in situ hybridization, we show that CIN maintains surface flatness by regulating the signaling or level of major plant hormones in developing leaves. CIN promotes cytokinin signaling by directly binding to and thereby promoting the expression of a cytokinin receptor, AmHK4, in a spatio¬temporal manner. Furthermore, it also seems to affect GA level indirectly in young leaves by regulating the spatio-temporal as well as levels of GA-biosynthetic and GA-degrading enzymes. Thus, CIN seems to accelerate maturity in leaf cells along the tip-to-base direction through its effect on the cytokinin and GA signaling pathways. In addition, CIN suppresses auxin signaling more at the margin than in the centre by establishing a margin-to-medial expression gradient of a homologue of the auxin suppressor IAA3, thereby suppressing excess cell proliferation on the margin. Our results uncover an underlying mechanism in a developing leaf that controls curvature of the leaf surface by promotion of timely exit from cell proliferation in the proximo-distal as well as the medio-lateral axes via multiple hormone pathways. Divergent growth polarities in the proximo-distal axis of leaves The morphogenetic gradient in the proximo-distal axis of a leaf is brought about by the dynamic expression of several heterochronic regulators which can include TCP and GRF classes of transcription factors. Interestingly, many of these transcription factors are also regulated post-transcriptionally by micro RNAs. In case of the studied model species, these factors seem to be associated with basipetal growth. The early arrest in cell proliferation at the tip and continued cell division at the base has served as a paradigm in studying leaf growth and has been used to conceptualize the growth of leaves with different shapes. However, the possibility of the existence of different patterning mechanisms during leaf growth in the highly diverse plant kingdom remains unexplored. Our survey of leaf growth patterns in 75 dicot species reveals the existence of four distinct proximo-distal polarities in growth patterns. Using the law of simple allometry, we also show that the differentially growing regions of leaves bear a constant relationship between them during growth. A combination of cell-size studies, histochemical staining and expression analysis reveals a strong correlation among growth pattern, cell size and the cell proliferation status. The cell size studies also indicate that there is a wide variation in the final cell sizes of leaves and the relative contribution of cell division and cell expansion to the final leaf size can be highly variable. Furthermore, we find that the varying growth patterns are linked to changes in the expression pattern of miR396, which controls the expression pattern of cell division regulatory transcription factors, the GRFs. Mis-expressing miR396 at the base of the young Arabidopsis leaf caused an early exit from cell division while reducing the expression of the miR396 at the tip allowed cell division to continue for a longer duration near the tip. Our results demonstrate that leaves with similar shapes can be differently patterned and that this divergent patterning is linked to the expression differences in the regulatory micro RNA, miR396 In conclusion, this study shows that regulators like CIN maintain surface flatness of the Antirrhinum leaf during growth by promoting timely exit from cell division along the proximo-distal and the medio-lateral axes; and it does so by regulating multiple hormone pathways. Although the basic mechanism of patterned cell division and differentiation seems to be conserved among species, the polarities of growth can vary. The variability in the growth polarities could be brought about by changes in the trans-regulation or cis-regulatory changes in the patterning genes.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "MIR319C"

1

Schommer, Carla, Edgardo G. Bresso, Silvana V. Spinelli, and Javier F. Palatnik. "Role of MicroRNA miR319 in Plant Development." In MicroRNAs in Plant Development and Stress Responses, 29–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27384-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "MIR319C"

1

Yu, Xiang, Olga Aprelikova, John Palla, Simone John, Ming Yi, Robert Stephens, John I. Risinger, Amir Jazaeri, and John Niederhuber. "Abstract 1423: SatB2, targeted by miR31, is a modulator in cancer microenvironment." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1423.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "MIR319C"

1

Whitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.

Full text
Abstract:
Understanding how RNA viruses cause disease symptoms in their hosts is expected to provide information that can be exploited to enhance modern agriculture. The helper component-proteinase (HC-Pro) protein of potyviruses has been implicated in symptom development. Previously, we demonstrated that symptom expression is associated with binding of duplex small-interfering-RNA (duplex-siRNA) to a highly conserved FRNK amino acid motif in the HC-Pro of Zucchini yellow mosaic virus (ZYMV). This binding activity also alters host microRNA (miRNA) profiles. In Turnip mosaic virus (TuMV), which infects the model plant Arabidopsis, mutation of the FRNK motif to FINK was lethal providing further indication of the importance of this motif to HC-Pro function. In this continuation project, our goal was to further investigate how ZYMV and TuMV cause the mis-expression of genes in cucurbits and Arabidopsis, respectively, and to correlate altered gene expression with disease symptoms. Objective 1 was to examine the roles of aromatic and positively charged residues F164RNH and K215RLF adjacent to FR180NK in small RNA binding. Objective 2 was to determine the target genes of the miRNAs which change during HC-Pro expression in infected tissues and transgenic cucumber. Objective 3 was to characterize RNA silencing mechanisms underlying differential expression of host genes. Objective 4 was to analyze the function of miRNA target genes and differentially expressed genes in potyvirus-infected tissues. We found that the charged K/R amino acid residues in the FKNH and KRLF motifs are essential for virus viability. Replacement of K to I in FKNH disrupted duplex-siRNA binding and virus infectivity, while in KRLF mutants duplex-siRNA binding was maintained and virus infectivity was limited: symptomless following a recovery phenomenon. These findings expanded the duplex-siRNA binding activity of HC-Pro to include the adjacent FRNK and FRNH sites. ZYMV causes many squash miRNAs to hyper-accumulate such as miR166, miR390, mir168, and many others. Screening of mir target genes showed that only INCURVATA-4 and PHAVOLUTA were significantly upregulated following ZYMVFRNK infection. Supporting this finding, we found similar developmental symptoms in transgenic Arabidopsis overexpressing P1-HC-Pro of a range of potyviruses to those observed in miR166 mutants. We characterized increased transcription of AGO1 in response to infection with both ZYMV strains. Differences in viral siRNA profiles and accumulation between mild and severe virus infections were characterized by Illumina sequencing, probably due to the differences in HC-Pro binding activity. We determined that the TuMV FINK mutant could accumulate and cause symptoms in dcl2 dcl4 or dcl2 dcl3 dcl4 mutants similar to TuMV FRNK in wild type Arabidopsis plants. These dcl mutant plants are defective in antiviral defenses, and the results show that factors other than HC-ProFRNK motif can induce symptoms in virus-infected plants. As a result of this work, we have a better understanding of the FRNK and FKNH amino acid motifs of HC-Pro and their contributions to the duplex-siRNA binding functions. We have identified plant genes that potentially contribute to infectivity and symptoms of virus infected plants when they are mis-expressed during potyviral infections. The results establish that there are multiple underlying molecular mechanisms that lead viral pathogenicity, some dependent on HC-Pro. The potential benefits include the development of novel strategies for controlling diseases caused by viruses, methods to ensure stable expression of transgenes in genetically improved crops, and improved potyvirus vectors for expression of proteins or peptides in plants.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography