Academic literature on the topic 'Minkowski'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Minkowski.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Minkowski"

1

Alrimawi, Fadi, and Fuad A. Abushaheen. "Minkowski–Clarkson’s type inequalities." Analysis 41, no. 3 (May 19, 2021): 163–68. http://dx.doi.org/10.1515/anly-2019-0020.

Full text
Abstract:
Abstract In this paper, we give some Minkowski–Clarkson’s type inequalities related to two finite sequences of real nonnegative numbers. In particular, we prove two inequalities which in some sense can be regarded as inverse Minkowski’s inequalities concerning the cases p ≥ 2 {p\geq 2} and 0 < p ≤ 1 {0<p\leq 1} . Moreover, for 1 < p < 2 {1<p<2} we prove another Minkowski–Clarkson’s type inequality.
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Farhad, Muhammad Asif Jan, Wali Khan Mashwani, Rashida Adeeb Khanum, and Hidayat Ullah Khan. "The Physical Significance of Time Conformal Minkowski Spacetime." April 2020 39, no. 2 (April 1, 2020): 365–70. http://dx.doi.org/10.22581/muet1982.2002.12.

Full text
Abstract:
The Minkowsiki spacetime is flat and there is no source of gravitation. The time conformal factor is adding some cuvature to this spacetime which introduces some source of gravitation to the spacetime. For the Minkowski spacetime the Einstein Field equation tells nothing, because all the components of the Ricci curvature tensor are zero, but for the time conformal Minkowski spacetime some of them are non zero. Calculating the components of the Ricci tensor and using the Einstein field equations, expressions for the cosmological constant are cacultaed. These expressions give some information for the cosmological constant. Generally, the Noether symmetry generator corresponding to the energy content in the spacetime disapeares by introducing the time conformal factor, but our investigations in this paper reveals that it appears somewhere with some re-scale factor. The appearance of the time like isometry along with some re-scaling factor will rescale the energy content in the corresponding particular time conformal Minkowski spacetime. A time conformal factor of the form () is introduced in the Minkowski spacetime for the invistigation of the cosmological constant. The Noether symmetry equation is used for the Lagrangian of general time conformal Minkowski spacetime to find all those particular Minkowski spacetimes that admit the time conformal factor. Besides the Noether symmetries the cosmology constant is calculated in the corresponding spacetimes.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Chang-Jian, and Wing Sum Cheung. "On reverse Hölder and Minkowski inequalities." Mathematica Slovaca 70, no. 4 (August 26, 2020): 821–28. http://dx.doi.org/10.1515/ms-2017-0395.

Full text
Abstract:
AbstractIn the paper, we give new improvements of the reverse Hölder and Minkowski integral inequalities. These new results in special case yield the Pólya-Szegö’s inequality and reverse Minkowski’s inequality, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Martini, Horst, and Margarita Spirova. "Covering Discs in Minkowski Planes." Canadian Mathematical Bulletin 52, no. 3 (September 1, 2009): 424–34. http://dx.doi.org/10.4153/cmb-2009-046-2.

Full text
Abstract:
AbstractWe investigate the following version of the circle covering problem in strictly convex (normed or) Minkowski planes: to cover a circle of largest possible diameter by k unit circles. In particular, we study the cases k = 3, k = 4, and k = 7. For k = 3 and k = 4, the diameters under consideration are described in terms of side-lengths and circumradii of certain inscribed regular triangles or quadrangles. This yields also simple explanations of geometric meanings that the corresponding homothety ratios have. It turns out that basic notions from Minkowski geometry play an essential role in our proofs, namely Minkowskian bisectors, d-segments, and the monotonicity lemma.
APA, Harvard, Vancouver, ISO, and other styles
5

Kjeldsen, Tinne Hoff. "Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity." Science in Context 22, no. 1 (March 2009): 85–113. http://dx.doi.org/10.1017/s0269889708002081.

Full text
Abstract:
ArgumentTwo simultaneous episodes in late nineteenth-century mathematical research, one by Karl Hermann Brunn (1862–1939) and another by Hermann Minkowski (1864–1909), have been described as the origin of the theory of convex bodies. This article aims to understand and explain (1) how and why the concept of such bodies emerged in these two trajectories of mathematical research; and (2) why Minkowski's – and not Brunn's – strand of thought led to the development of a theory of convexity. Concrete pieces of Brunn's and Minkowski's mathematical work in the two episodes will, from the perspective of the above questions, be presented and analyzed with the use of the methodological framework of epistemic objects, techniques, and configurations as adapted from Hans-Jörg Rheinberger's work on empirical sciences to the historiography of mathematics by Moritz Epple. Based on detailed descriptions and a comparison of the objects and techniques that Brunn and Minkowski studied and used in these pieces it will be concluded that Brunn and Minkowski worked in different epistemic configurations, and it will be argued that this had a significant influence on the mathematics they developed for those bodies, which can provide answers to the two research questions listed above.
APA, Harvard, Vancouver, ISO, and other styles
6

Fillastre, François. "Christoffel and Minkowski problems in Minkowski space." Séminaire de théorie spectrale et géométrie 32 (2015): 97–114. http://dx.doi.org/10.5802/tsg.305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xue, F., and C. Zong. "Minkowski bisectors, Minkowski cells and lattice coverings." Geometriae Dedicata 188, no. 1 (November 16, 2016): 123–39. http://dx.doi.org/10.1007/s10711-016-0208-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonsante, Francesco, and François Fillastre. "The equivariant Minkowski problem in Minkowski space." Annales de l’institut Fourier 67, no. 3 (2017): 1035–113. http://dx.doi.org/10.5802/aif.3105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Speer, C. P. "Alexandre Minkowski." Neonatology 86, no. 3 (2004): 183. http://dx.doi.org/10.1159/000079519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ludwig, Monika. "Minkowski valuations." Transactions of the American Mathematical Society 357, no. 10 (October 28, 2004): 4191–213. http://dx.doi.org/10.1090/s0002-9947-04-03666-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Minkowski"

1

Guo, Qi. "Minkowski Measure of Asymmetry and Minkowski Distance for Convex Bodies." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Limiao. "Formule di Minkowski." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19249/.

Full text
Abstract:
Dopo aver introdotto le quantità fondamentali per lo studio della curvatura delle superfici, mappa di Gauss, curvatura media e gaussiana, ed aver enunciato e provato il teorema della divergenza nello spazio tridimensionale, si dimostreranno le formule di Minkowski; in ultimo saranno presentati come corollari i teoremi di Hilbert-Liebmann e di Jellett.
APA, Harvard, Vancouver, ISO, and other styles
3

Rousset, Mireille. "Sommes de Minkowski de triangles." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005017.

Full text
Abstract:
La modélisation géométrique d'un problème de gestion de la fabrication des mélanges (faisabilité simultanée de deux mélanges) fait apparaître des polytopes nouveaux résultant de la somme de triangles particuliers qui dans ce contexte sont appelés convexes de 2-mélanges. De façon plus générale, la somme de triangles peut être considérée comme la généralisation des zonotopes (somme de segments). De ce point de vue, l'étude menée ici fait apparaître que la propriété de zone associée à un segment du zonotope se généralise à trois demi-zones associées à chaque triangle; et que la complexité combinatoire (nombre de faces du polytope), par rapport au nombre de sommandes, est du même ordre de grandeur que celle des zonotopes. On traite également le problème de la construction de tels polytopes, des algorithmes optimaux en temps sont proposés. Concernant le problème particulier des mélanges, le premier cas non trivial est celui de mélanges à trois composantes qui nous place en dimension 6. L'appartenance d'un point au convexe de 2-mélanges détermine la faisabilité simultanée des mélanges. Les facettes de ce polytope sont décrites, en détail, dans le cas de la dimension 6, dans le but d'obtenir des conditions de faisabilité des deux mélanges. Le problème de la décomposition de polytopes en somme de Minkowski de polytopes plus simples est exposé, ainsi que les principaux résultats existant.
APA, Harvard, Vancouver, ISO, and other styles
4

Düvelmeyer, Nico. "Selected Problems from Minkowski Geometry." Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601961.

Full text
Abstract:
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler Banach-Räume (Minkowski-Geometrie). Der erste Schwerpunkt liegt dabei auf Winkelmassen und Winkelhalbierenden. Dafür gibt es verschiedene Verallgemeinerungen dieser Euklidischen Konzepte, die im allgemeinen in Minkowski-Räumen verschieden sind. Es werden alle Minkowski-Räume charakterisiert, in welchen zwei dieser Konzepte für alle möglichen Winkel das selbe Maß oder die selben Winkelhalbierenden liefern. Der zweite Teil der Dissertation behandelt die Einbettung von metrischen Räumen in Minkowski-Räume. Dabei steht die Einbettung in beliebige geeignete Minkowski-Räume fester Dimension im Mittelpunkt. Hauptergebnis ist hier die vollständige Klassifikation aller 2-Abstands-Mengen in Minkowski-Ebenen, d.h., aller möglichen Mengen von Punkten einer Minkowski-Ebene, so dass zwischen diesen Punkten nur zwei verschiedene positive Abstandswerte auftreten
This dissertation deals with two geometric subjects in finite dimensional Banach spaces (Minkowski geometry). The first topics are angle measures and angular bisectors. There are several possibilities to generalize these Euclidean concepts, which yield in general distinct geometrical objects in Minkowski spaces. A characterization is given for Minkowski spaces, for which two such concepts yield for all possible angles the same angular measure or the same angular bisector. The second part of the dissertation deals with embeddings of metric spaces into Minkowski spaces. It focuses on embeddings into some arbitrary suitable Minkowski space of prescribed dimension. The major result is the complete classification of all 2-distance sets in Minkowski planes, i.e., of all subsets of points of a Minkowski plane such that there are only two different positive distance values between these points
APA, Harvard, Vancouver, ISO, and other styles
5

Fankhänel, Andreas. "Metrical Problems in Minkowski Geometry." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-95007.

Full text
Abstract:
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes. In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors. In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms. Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
APA, Harvard, Vancouver, ISO, and other styles
6

Taylor, Thomas E. "Differential geometry of Minkowski spaces." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24990.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Troncoso, Rey Perla. "Extending Minkowski norm illuminant estimation." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/41970/.

Full text
Abstract:
The ability to obtain colour images invariant to changes of illumination is called colour constancy. An algorithm for colour constancy takes sensor responses - digital images - as input, estimates the ambient light and returns a corrected image in which the illuminant influence over the colours has been removed. In this thesis we investigate the step of illuminant estimation for colour constancy and aim to extend the state of the art in this field. We first revisit the Minkowski Family Norm framework for illuminant estimation. Because, of all the simple statistical approaches, it is the most general formulation and, crucially, delivers the best results. This thesis makes four technical contributions. First, we reformulate the Minkowski approach to provide better estimation when a constraint on illumination is employed. Second, we show how the method can (by orders of magnitude) be implemented to run much faster than previous algorithms. Third, we show how a simple edge based variant delivers improved estimation compared with the state of the art across many datasets. In contradistinction to the prior state of the art our definition of edges is fixed (a simple combination of first and second derivatives) i.e. we do not tune our algorithm to particular image datasets. This performance is further improved by incorporating a gamut constraint on surface colour -our 4th contribution. The thesis finishes by considering our approach in the context of a recent OSA competition run to benchmark computational algorithms operating on physiologically relevant cone based input data. Here we find that Constrained Minkowski Norms operi ii ating on spectrally sharpened cone sensors (linear combinations of the cones that behave more like camera sensors) supports competition leading illuminant estimation.
APA, Harvard, Vancouver, ISO, and other styles
8

Sacramento, Andrea de Jesus. "Curvas no espaço de Minkowski." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15092015-163612/.

Full text
Abstract:
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica.
We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
APA, Harvard, Vancouver, ISO, and other styles
9

Giannerini, Davide. "La disuguaglianza di Brunn-Minkowski." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23711/.

Full text
Abstract:
Questa tesi ha come argomento la disuguaglianza di Brunn-Minkowski, risultato fondamentale nella teoria della geometria convessa. Essa riguarda la relazione esistente tra i volumi di due corpi convessi (insiemi compatti, convessi e non vuoti) e il volume del corpo convesso ottenuto come "combinazione convessa" dei due. Nella tesi presentiamo una delle dimostrazioni che poggia sulla disuguaglianza di Prèkopa-Leindler. I primi capitoli della tesi sono rivolti alla presentazione, il più possibile dettagliata, dei prerequisiti. La parte più impegnativa e più tecnica della tesi è costituita dalla preparazione della dimostrazione della disuguaglianza di Prèkopa-Leindler. Essa si basa su importanti risultati della teoria della misura, la cui trattazione viene sviluppata nei primi capitoli, riguardanti le funzioni monotone, le funzioni a variazione limitata e le funzioni assolutamente continue. Infatti necessitiamo del teorema di derivabilità q.o. delle funzioni monotone, che viene qui dimostrato facendo uso del famoso lemma di Vitali, del Teorema fondamentale del calcolo integrale di Lebesgue, della formula di derivazione di funzioni composte per funzioni non regolari, di un risultato di validità della formula della catena e di una opportuna formulazione di integrazione per sostituzione per l'integrale di Lebesgue. Altro risultato utile è la disuguaglianza tra la media aritmetica e la media geometrica. Nel capitolo finale, forniamo un'applicazione rilevante, quanto naturale, della disuguaglianza di Brunn-Minkowski: la disuguaglianza isoperimetrica per i corpi convessi. Essa viene dimostrata utilizzando la cosiddetta formula di Steiner e la prima disuguaglianza di Minkowski per i corpi convessi. Mostriamo inoltre che dalla caratterizzazione degli insiemi che danno l'uguaglianza per la disuguaglianza di Brunn-Minkowski, è possibile dimostrare che i corpi convessi che danno l'uguaglianza per la disuguaglianza isoperimetrica sono tutte e sole le palle euclidee.
APA, Harvard, Vancouver, ISO, and other styles
10

Ramos, Luciano de Melo. "Teorema de Schur no plano de Minkowski e caracterização de hélices inclinadas no espaço de Minkowski." Universidade Federal de São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/5893.

Full text
Abstract:
Made available in DSpace on 2016-06-02T20:28:28Z (GMT). No. of bitstreams: 1 5368.pdf: 682883 bytes, checksum: 5c5cfc6294b1e5bb055b5a66c6f09101 (MD5) Previous issue date: 2013-06-27
Financiadora de Estudos e Projetos
A classical theorem of differential geometry of curves in Euclidean space is the Schur's Theorem, that was proof by A. Schur in 1921, when both curvatures agree pointwise [3]. The proof in the general case was proved in 1925 by E. Schmidt in [4]. The first objective in this dissertation is to present Lorentzian version of Schur's Theorem in the Minkowski plane. Then we will show some applications due to R. López [1]. In the Minkowski space we will see that the Schur's Theorem is false. The second objective is show a characterization of slant helices in the Minkowski space obtained by A. T. Ali and R. López in [2], which extends naturally a characterization of slant helices in Euclidean space obtained in 2004 by S. Izumiya And N. Takeuchi [6]. We conclude with an application that characterization of slant helices [2].
Um resultado clássico da geometria diferencial de curvas no espaço euclidiano é o Teorema de Schur, que primeiro foi provado em 1921 por A. Schur em [3] no caso em que as curvaturas das curvas coincidem pontualmente. O caso geral do teorema foi provado em 1925 por E. Schmidt em [4]. O primeiro objetivo desta dissertação é apresentar uma versão do Teorema de Shur para o plano de Minkowski. Em seguida, mostraremos algumas aplicações desse resultado feitas por R. López em [1]. No caso do espaço de Minkowski veremos que o Teorema de Schur é falso. O segundo objetivo é mostrar uma caracterização das hélices inclinadas no espaço de Minkowski obtidas por A. T. Ali e R. López em [2], a qual estende de forma natural a caracterização de hélices inclinadas no espaço euclidiano obtida em 2004 por S. Izumiya e N. Takeuchi [6]. Concluímos esta dissertação provando uma caracterização de hélices inclinadas obtida em [2].
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Minkowski"

1

1881-1930, Minkowski Maurycy, Lichtenbaum Abraham, Bronstein de Wilkis Silvia, and Yiṿo in Argenṭine, eds. Maurycy Minkowski. Buenos Aires, Argentina: Fundación IWO, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marc Minkowski. Paris: Naïve, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Anthony C. Minkowski geometry. Cambridge: Cambridge University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scharlau, Winfried, and Hans Opolka. From Fermat to Minkowski. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1867-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Naber, Gregory L. The Geometry of Minkowski Spacetime. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-7838-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naber, Gregory L. The Geometry of Minkowski Spacetime. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4326-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rowe, E. G. Peter. Geometrical Physics in Minkowski Spacetime. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3893-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Catoni, Francesco, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, and Paolo Zampetti. Geometry of Minkowski Space-Time. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17977-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Naber, Gregory L. The Geometry of Minkowski Spacetime. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Geometrical physics in Minkowski spacetime. London: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Minkowski"

1

Molchanov, Ilya. "Minkowski Sums." In Theory of Random Sets, 317–78. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7349-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gourgoulhon, Éric. "Minkowski Spacetime." In Special Relativity in General Frames, 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37276-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hilbert, David. "Hermann Minkowski." In Teubner-Archiv zur Mathematik, 197–223. Vienna: Springer Vienna, 1989. http://dx.doi.org/10.1007/978-3-7091-9536-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, Graham. "Minkowski, Hermann." In Biographical Encyclopedia of Astronomers, 1489–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shen, Zhongmin. "Minkowski Spaces." In Differential Geometry of Spray and Finsler Spaces, 3–20. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9727-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Natário, José. "Minkowski Geometry." In General Relativity Without Calculus, 17–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21452-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, Graham, Ian Elliott, Mihkel Joeveer, Fabrizio Bònoli, Y. Tzvi Langermann, Josep Casulleras, Ke Ve Sarma, et al. "Minkowski, Hermann." In The Biographical Encyclopedia of Astronomers, 786. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaichian, Masud, Ioan Merches, Daniel Radu, and Anca Tureanu. "Minkowski Space." In Electrodynamics, 377–435. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-17381-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hilbert, David. "Hermann Minkowski." In Teubner-Archiv zur Mathematik, 197–232. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-90190-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schürmann, Achill. "Minkowski reduction." In University Lecture Series, 17–26. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/ulect/048/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Minkowski"

1

Martinez-Ortiz, Carlos, and Richard Everson. "Minkowski compactness measure." In 2013 13th UK Workshop on Computational Intelligence (UKCI). IEEE, 2013. http://dx.doi.org/10.1109/ukci.2013.6651288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podleś, Piotr. "Quantum Minkowski spaces." In Particles, fields and gravitation. AIP, 1998. http://dx.doi.org/10.1063/1.57123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Han, Leilei Zhang, Bingning Wang, Ting Yao, and Junfei Liu. "Cycle or Minkowski." In CIKM '21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459637.3482245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mansuripur, Masud, and Armis R. Zakharian. "Whence the Minkowski momentum?" In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2009. http://dx.doi.org/10.1117/12.825479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Regev, Oded, and Noah Stephens-Davidowitz. "A reverse Minkowski theorem." In STOC '17: Symposium on Theory of Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3055399.3055434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

von Dichter, Katherina. "Relating Brunn-Minkowski and Rogers-Shephard inequalities with the Minkowski asymmetry measure." In 2nd Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2019. http://dx.doi.org/10.5592/co/ccd.2018.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lien, Jyh-Ming. "Point-Based Minkowski Sum Boundary." In 15th Pacific Conference on Computer Graphics and Applications (PG'07). IEEE, 2007. http://dx.doi.org/10.1109/pg.2007.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sinha, Divyendu, and Edward R. Dougherty. "Characterization of fuzzy Minkowski algebra." In San Diego '92, edited by Paul D. Gader, Edward R. Dougherty, and Jean C. Serra. SPIE, 1992. http://dx.doi.org/10.1117/12.60632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbosa, Livia C., Lidiane S. Araujo, Crislane P. N. Silva, and Antonio J. B. de Oliveira. "A modified Minkowski fractal monopole." In 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). IEEE, 2011. http://dx.doi.org/10.1109/imoc.2011.6169354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Flato, Eyal, Efi Fogel, Dan Halperin, and Eran Leiserowitz. "Exact minkowski sums and applications." In the eighteenth annual symposium. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/513400.513432.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Minkowski"

1

Saad, Anis. Clairaut's Theorem in Minkowski Space. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-105-112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghandehari, Mostafa, and Richard Pfiefer. Self-Circumference in the Minkowski Plane. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada205691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

İlarslan, Kazim, Ali Uçum, and Ivaïlo M. Mladenov. Sturmian Spirals in Lorentz-Minkowski Plane. Jgsp, 2015. http://dx.doi.org/10.7546/jgsp-37-2015-25-42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghandehari, Mostafa, and Dave Logothetti. Elliptic Integrals in the Minkowski Plane. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Low, Robert J. Framing Curves in Euclidean and Minkowski Space. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-27-2012-83-91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saad, Ansi, and Robert J. Low. A Generalized Clairaut's Theorem in Minkowski Space. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-103-111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsyfra, Ivan. Symmetry of the Maxwell and Minkowski Equations System. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-9-2007-75-81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

. Alias, Luis J. Constant Curvature Spacelike Hypersurfaces in the Lorentz–Minkowski Space. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-17-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mira, Pablo. Construction of Maximal Surfaces in the Lorentz–Minkowski Space. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-337-350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brander, David, and Wayne Rossman. Constant Mean Curvature Surfaces in Euclidean and Minkowski Three-Spaces. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-133-142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography