Academic literature on the topic 'Minkowski'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Minkowski.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Minkowski"
Alrimawi, Fadi, and Fuad A. Abushaheen. "Minkowski–Clarkson’s type inequalities." Analysis 41, no. 3 (May 19, 2021): 163–68. http://dx.doi.org/10.1515/anly-2019-0020.
Full textAli, Farhad, Muhammad Asif Jan, Wali Khan Mashwani, Rashida Adeeb Khanum, and Hidayat Ullah Khan. "The Physical Significance of Time Conformal Minkowski Spacetime." April 2020 39, no. 2 (April 1, 2020): 365–70. http://dx.doi.org/10.22581/muet1982.2002.12.
Full textZhao, Chang-Jian, and Wing Sum Cheung. "On reverse Hölder and Minkowski inequalities." Mathematica Slovaca 70, no. 4 (August 26, 2020): 821–28. http://dx.doi.org/10.1515/ms-2017-0395.
Full textMartini, Horst, and Margarita Spirova. "Covering Discs in Minkowski Planes." Canadian Mathematical Bulletin 52, no. 3 (September 1, 2009): 424–34. http://dx.doi.org/10.4153/cmb-2009-046-2.
Full textKjeldsen, Tinne Hoff. "Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity." Science in Context 22, no. 1 (March 2009): 85–113. http://dx.doi.org/10.1017/s0269889708002081.
Full textFillastre, François. "Christoffel and Minkowski problems in Minkowski space." Séminaire de théorie spectrale et géométrie 32 (2015): 97–114. http://dx.doi.org/10.5802/tsg.305.
Full textXue, F., and C. Zong. "Minkowski bisectors, Minkowski cells and lattice coverings." Geometriae Dedicata 188, no. 1 (November 16, 2016): 123–39. http://dx.doi.org/10.1007/s10711-016-0208-7.
Full textBonsante, Francesco, and François Fillastre. "The equivariant Minkowski problem in Minkowski space." Annales de l’institut Fourier 67, no. 3 (2017): 1035–113. http://dx.doi.org/10.5802/aif.3105.
Full textSpeer, C. P. "Alexandre Minkowski." Neonatology 86, no. 3 (2004): 183. http://dx.doi.org/10.1159/000079519.
Full textLudwig, Monika. "Minkowski valuations." Transactions of the American Mathematical Society 357, no. 10 (October 28, 2004): 4191–213. http://dx.doi.org/10.1090/s0002-9947-04-03666-9.
Full textDissertations / Theses on the topic "Minkowski"
Guo, Qi. "Minkowski Measure of Asymmetry and Minkowski Distance for Convex Bodies." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4286.
Full textJin, Limiao. "Formule di Minkowski." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19249/.
Full textRousset, Mireille. "Sommes de Minkowski de triangles." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005017.
Full textDüvelmeyer, Nico. "Selected Problems from Minkowski Geometry." Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601961.
Full textThis dissertation deals with two geometric subjects in finite dimensional Banach spaces (Minkowski geometry). The first topics are angle measures and angular bisectors. There are several possibilities to generalize these Euclidean concepts, which yield in general distinct geometrical objects in Minkowski spaces. A characterization is given for Minkowski spaces, for which two such concepts yield for all possible angles the same angular measure or the same angular bisector. The second part of the dissertation deals with embeddings of metric spaces into Minkowski spaces. It focuses on embeddings into some arbitrary suitable Minkowski space of prescribed dimension. The major result is the complete classification of all 2-distance sets in Minkowski planes, i.e., of all subsets of points of a Minkowski plane such that there are only two different positive distance values between these points
Fankhänel, Andreas. "Metrical Problems in Minkowski Geometry." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-95007.
Full textTaylor, Thomas E. "Differential geometry of Minkowski spaces." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24990.pdf.
Full textTroncoso, Rey Perla. "Extending Minkowski norm illuminant estimation." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/41970/.
Full textSacramento, Andrea de Jesus. "Curvas no espaço de Minkowski." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15092015-163612/.
Full textWe study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
Giannerini, Davide. "La disuguaglianza di Brunn-Minkowski." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23711/.
Full textRamos, Luciano de Melo. "Teorema de Schur no plano de Minkowski e caracterização de hélices inclinadas no espaço de Minkowski." Universidade Federal de São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/5893.
Full textFinanciadora de Estudos e Projetos
A classical theorem of differential geometry of curves in Euclidean space is the Schur's Theorem, that was proof by A. Schur in 1921, when both curvatures agree pointwise [3]. The proof in the general case was proved in 1925 by E. Schmidt in [4]. The first objective in this dissertation is to present Lorentzian version of Schur's Theorem in the Minkowski plane. Then we will show some applications due to R. López [1]. In the Minkowski space we will see that the Schur's Theorem is false. The second objective is show a characterization of slant helices in the Minkowski space obtained by A. T. Ali and R. López in [2], which extends naturally a characterization of slant helices in Euclidean space obtained in 2004 by S. Izumiya And N. Takeuchi [6]. We conclude with an application that characterization of slant helices [2].
Um resultado clássico da geometria diferencial de curvas no espaço euclidiano é o Teorema de Schur, que primeiro foi provado em 1921 por A. Schur em [3] no caso em que as curvaturas das curvas coincidem pontualmente. O caso geral do teorema foi provado em 1925 por E. Schmidt em [4]. O primeiro objetivo desta dissertação é apresentar uma versão do Teorema de Shur para o plano de Minkowski. Em seguida, mostraremos algumas aplicações desse resultado feitas por R. López em [1]. No caso do espaço de Minkowski veremos que o Teorema de Schur é falso. O segundo objetivo é mostrar uma caracterização das hélices inclinadas no espaço de Minkowski obtidas por A. T. Ali e R. López em [2], a qual estende de forma natural a caracterização de hélices inclinadas no espaço euclidiano obtida em 2004 por S. Izumiya e N. Takeuchi [6]. Concluímos esta dissertação provando uma caracterização de hélices inclinadas obtida em [2].
Books on the topic "Minkowski"
1881-1930, Minkowski Maurycy, Lichtenbaum Abraham, Bronstein de Wilkis Silvia, and Yiṿo in Argenṭine, eds. Maurycy Minkowski. Buenos Aires, Argentina: Fundación IWO, 2006.
Find full textMarc Minkowski. Paris: Naïve, 2009.
Find full textThompson, Anthony C. Minkowski geometry. Cambridge: Cambridge University Press, 1996.
Find full textScharlau, Winfried, and Hans Opolka. From Fermat to Minkowski. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1867-6.
Full textNaber, Gregory L. The Geometry of Minkowski Spacetime. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-7838-7.
Full textNaber, Gregory L. The Geometry of Minkowski Spacetime. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4326-5.
Full textRowe, E. G. Peter. Geometrical Physics in Minkowski Spacetime. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-3893-8.
Full textCatoni, Francesco, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, and Paolo Zampetti. Geometry of Minkowski Space-Time. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17977-8.
Full textNaber, Gregory L. The Geometry of Minkowski Spacetime. New York: Springer-Verlag, 1992.
Find full textGeometrical physics in Minkowski spacetime. London: Springer, 2001.
Find full textBook chapters on the topic "Minkowski"
Molchanov, Ilya. "Minkowski Sums." In Theory of Random Sets, 317–78. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7349-6_3.
Full textGourgoulhon, Éric. "Minkowski Spacetime." In Special Relativity in General Frames, 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37276-6_1.
Full textHilbert, David. "Hermann Minkowski." In Teubner-Archiv zur Mathematik, 197–223. Vienna: Springer Vienna, 1989. http://dx.doi.org/10.1007/978-3-7091-9536-9_9.
Full textHall, Graham. "Minkowski, Hermann." In Biographical Encyclopedia of Astronomers, 1489–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-9917-7_958.
Full textShen, Zhongmin. "Minkowski Spaces." In Differential Geometry of Spray and Finsler Spaces, 3–20. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9727-2_2.
Full textNatário, José. "Minkowski Geometry." In General Relativity Without Calculus, 17–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21452-3_2.
Full textHall, Graham, Ian Elliott, Mihkel Joeveer, Fabrizio Bònoli, Y. Tzvi Langermann, Josep Casulleras, Ke Ve Sarma, et al. "Minkowski, Hermann." In The Biographical Encyclopedia of Astronomers, 786. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30400-7_958.
Full textChaichian, Masud, Ioan Merches, Daniel Radu, and Anca Tureanu. "Minkowski Space." In Electrodynamics, 377–435. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-17381-3_7.
Full textHilbert, David. "Hermann Minkowski." In Teubner-Archiv zur Mathematik, 197–232. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-90190-3_9.
Full textSchürmann, Achill. "Minkowski reduction." In University Lecture Series, 17–26. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/ulect/048/02.
Full textConference papers on the topic "Minkowski"
Martinez-Ortiz, Carlos, and Richard Everson. "Minkowski compactness measure." In 2013 13th UK Workshop on Computational Intelligence (UKCI). IEEE, 2013. http://dx.doi.org/10.1109/ukci.2013.6651288.
Full textPodleś, Piotr. "Quantum Minkowski spaces." In Particles, fields and gravitation. AIP, 1998. http://dx.doi.org/10.1063/1.57123.
Full textYang, Han, Leilei Zhang, Bingning Wang, Ting Yao, and Junfei Liu. "Cycle or Minkowski." In CIKM '21: The 30th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459637.3482245.
Full textMansuripur, Masud, and Armis R. Zakharian. "Whence the Minkowski momentum?" In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2009. http://dx.doi.org/10.1117/12.825479.
Full textRegev, Oded, and Noah Stephens-Davidowitz. "A reverse Minkowski theorem." In STOC '17: Symposium on Theory of Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3055399.3055434.
Full textvon Dichter, Katherina. "Relating Brunn-Minkowski and Rogers-Shephard inequalities with the Minkowski asymmetry measure." In 2nd Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2019. http://dx.doi.org/10.5592/co/ccd.2018.02.
Full textLien, Jyh-Ming. "Point-Based Minkowski Sum Boundary." In 15th Pacific Conference on Computer Graphics and Applications (PG'07). IEEE, 2007. http://dx.doi.org/10.1109/pg.2007.49.
Full textSinha, Divyendu, and Edward R. Dougherty. "Characterization of fuzzy Minkowski algebra." In San Diego '92, edited by Paul D. Gader, Edward R. Dougherty, and Jean C. Serra. SPIE, 1992. http://dx.doi.org/10.1117/12.60632.
Full textBarbosa, Livia C., Lidiane S. Araujo, Crislane P. N. Silva, and Antonio J. B. de Oliveira. "A modified Minkowski fractal monopole." In 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). IEEE, 2011. http://dx.doi.org/10.1109/imoc.2011.6169354.
Full textFlato, Eyal, Efi Fogel, Dan Halperin, and Eran Leiserowitz. "Exact minkowski sums and applications." In the eighteenth annual symposium. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/513400.513432.
Full textReports on the topic "Minkowski"
Saad, Anis. Clairaut's Theorem in Minkowski Space. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-105-112.
Full textGhandehari, Mostafa, and Richard Pfiefer. Self-Circumference in the Minkowski Plane. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada205691.
Full textİlarslan, Kazim, Ali Uçum, and Ivaïlo M. Mladenov. Sturmian Spirals in Lorentz-Minkowski Plane. Jgsp, 2015. http://dx.doi.org/10.7546/jgsp-37-2015-25-42.
Full textGhandehari, Mostafa, and Dave Logothetti. Elliptic Integrals in the Minkowski Plane. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236710.
Full textLow, Robert J. Framing Curves in Euclidean and Minkowski Space. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-27-2012-83-91.
Full textSaad, Ansi, and Robert J. Low. A Generalized Clairaut's Theorem in Minkowski Space. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-103-111.
Full textTsyfra, Ivan. Symmetry of the Maxwell and Minkowski Equations System. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-9-2007-75-81.
Full text. Alias, Luis J. Constant Curvature Spacelike Hypersurfaces in the Lorentz–Minkowski Space. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-17-26.
Full textMira, Pablo. Construction of Maximal Surfaces in the Lorentz–Minkowski Space. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-337-350.
Full textBrander, David, and Wayne Rossman. Constant Mean Curvature Surfaces in Euclidean and Minkowski Three-Spaces. GIQ, 2012. http://dx.doi.org/10.7546/giq-10-2009-133-142.
Full text