Academic literature on the topic 'Miniaturized pneumatic artificial muscles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Miniaturized pneumatic artificial muscles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Miniaturized pneumatic artificial muscles"
Díaz-Zagal, S., C. Gutiérrez-Estrada, E. Rendón-Lara, I. Abundez-Barrera, and J. H. Pacheco-Sánchez. "Pneumatic Artificial Mini-Muscles Conception: Medical Robotics Applications." Applied Mechanics and Materials 15 (August 2009): 49–54. http://dx.doi.org/10.4028/www.scientific.net/amm.15.49.
Full textZabihollah, Shakila, Seyed Alireza Moezi, and Ramin Sedaghati. "Design Optimization of a Miniaturized Pneumatic Artificial Muscle and Experimental Validation." Actuators 12, no. 6 (May 25, 2023): 221. http://dx.doi.org/10.3390/act12060221.
Full textAshwin, K. P., and Ashitava Ghosal. "Static Modeling of Miniaturized Pneumatic Artificial Muscles, Kinematic Analysis, and Experiments on an Endoscopic End-Effector." IEEE/ASME Transactions on Mechatronics 24, no. 4 (August 2019): 1429–39. http://dx.doi.org/10.1109/tmech.2019.2916783.
Full textTiwari, Rashi, Michael A. Meller, Karl B. Wajcs, Caris Moses, Ismael Reveles, and Ephrahim Garcia. "Hydraulic artificial muscles." Journal of Intelligent Material Systems and Structures 23, no. 3 (February 2012): 301–12. http://dx.doi.org/10.1177/1045389x12438627.
Full textTóthová, Mária, Ján Piteľ, and Jana Boržíková. "Operating Modes of Pneumatic Artificial Muscle Actuator." Applied Mechanics and Materials 308 (February 2013): 39–44. http://dx.doi.org/10.4028/www.scientific.net/amm.308.39.
Full textWirekoh, Jackson, and Yong-Lae Park. "Design of flat pneumatic artificial muscles." Smart Materials and Structures 26, no. 3 (February 7, 2017): 035009. http://dx.doi.org/10.1088/1361-665x/aa5496.
Full textSorge, Francesco. "Dynamical behaviour of pneumatic artificial muscles." Meccanica 50, no. 5 (December 18, 2014): 1371–86. http://dx.doi.org/10.1007/s11012-014-0084-x.
Full textGyeviki, János, József Sárosi, Antal Véha, and Péter Toman. "Experimental investigation of characteristics of pneumatic artificial muscles." Jelenkori Társadalmi és Gazdasági Folyamatok 5, no. 1-2 (January 1, 2010): 244–48. http://dx.doi.org/10.14232/jtgf.2010.1-2.244-248.
Full textVerrelst, Bj�rn, Ronald Van Ham, Bram Vanderborght, Frank Daerden, Dirk Lefeber, and Jimmy Vermeulen. "The Pneumatic Biped ?Lucy? Actuated with Pleated Pneumatic Artificial Muscles." Autonomous Robots 18, no. 2 (March 2005): 201–13. http://dx.doi.org/10.1007/s10514-005-0726-x.
Full textVersluys, Rino, Kristel Deckers, Michaël Van Damme, Ronald Van Ham, Gunther Steenackers, Patrick Guillaume, and Dirk Lefeber. "A Study on the Bandwidth Characteristics of Pleated Pneumatic Artificial Muscles." Applied Bionics and Biomechanics 6, no. 1 (2009): 3–9. http://dx.doi.org/10.1155/2009/298125.
Full textDissertations / Theses on the topic "Miniaturized pneumatic artificial muscles"
Chandrapal, Mervin. "Intelligent Assistive Knee Orthotic Device Utilizing Pneumatic Artificial Muscles." Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/7475.
Full textLoccisano, Anthony. "Online Variable Recruitment for Pneumatic Artificial Muscles with Springs." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279666.
Full textPneumatiska artificiella muskler (PAM) har fått uppmärksamhet inom området för mjuk robotik för deras höga effekt-/viktförhållande, låga tillverkningskostnader, låg vikt och relativt enkla att implementera. Detta gör dem till bra kandidater för exoskelett. Ett område inom ny forskning innefattar variabel rekrytering, en process där man successivt aktiverar enskilda PAM i ett system bestående av flera sådana, för att förbättra den totala systemeffektiviteten. Medan några simulerings- och kvasistatiska studier existerar, har väldigt lite forskning undersökt realtidskoppling med ett fysiskt system. I de kvasistatiska studierna har knäckningen av ickeaktiverade PAM: er varit en konsekvent fråga. I detta projekt är en uppsättning av sex parallella PAM-serier anslutna seriellt till enskilda fjädrar för att förhindra att icke-aktiverade PAM-skivor knäcks under sammandragning. Systemet körs genom både en "batch-" och en "orderly-"openloop-rekryteringscykel för att bättre förstå övergångseffekter och energiförbrukning. Det visade sig att batchmetoden använder mer energi och är mer benägen att påverkas av att störningar under övergångar. Fjädrarna förhindrar dock knäckning på bekostnad av individuell rekryteringsnivå. Rekommendationer för att implementera omkopplingsstrategierna och hur man använder fjädrar ges.
Yang, Hee Doo. "Modeling and Analysis of a Novel Pneumatic Artificial Muscle and Pneumatic Arm Exoskeleton." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78284.
Full textMaster of Science
RAMOS, JOAO LUIZ ALMEIDA DE SOUZA. "TORQUE CONTROL OF AN EXOSKELETON ACTUATED BY PNEUMATIC ARTIFICIAL MUSCLES USING ELECTROMYOGRAPHIC SIGNALS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=22293@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A robótica aplicada à reabilitação e amplificação humana está em uma fase iminente de se tornar parte de nossa vida diária. A justaposição da capacidade de controle humana e o poder mecânico desenvolvido pelas máquinas oferecem uma promissora solução para auxílio físico e de amplificação humana. O presente trabalho apresenta um exoesqueleto ativo para membros superiores controlado por uma alternativa e simples Interface Homem-Máquina (HMI) que utiliza o Modelo Muscular de Hill para aumentar a força e resistência mecânica do usuário. Músculos Pneumáticos Artificiais (PAM) são utilizados como atuadores por sua alta razão entre potência e peso e atuam o sistema através de um esquema com cabos de aço. Algoritmos Genéticos (GA) aproximam localmente os parâmetros do modelo matemático do atuador e o modelo fisiológico do músculo, que utiliza sinais eletromiográficos superficiais (sEMG) para estimar o torque na articulação do exoesqueleto. A metodologia proposta oferece três vantagens principais: (i) reduz o número de eletrodos necessários para monitorar a atividade muscular, (ii) elimina a necessidade de transdutores de força ou pressão entre o exoesqueleto e o usuário ou o ambiente e (iii) reduz o custo de processamento em tempo-real, necessário para implementações de sistemas embarcados. O exoesqueleto é restrito ao membro superior direito e a estratégia de controle é avaliada verificando o desempenho do usuário ao manipular uma carga de 3.1kg estática e dinamicamente com e sem o auxílio do equipamento assistivo.
Robotics for rehabilitation and human amplification is imminent to become part of our daily life. The juxtaposition of human control capability and machine mechanical power offers a promising solution for human assistance and physical enhancement. This work presents an upper limb active exoskeleton controlled by an alternative and simple Human-Machine Interface (HMI) that uses a Hill Muscle Model for strength and endurance amplification. Pneumatic Artificial Muscles (PAM) are used as actuators for its high power-to-weight ratio and to drive the system through a cable arrangement. Genetic Algorithms (GA) approach locally optimizes the model parameters for the actuator mathematical model and the physiologic muscle model that uses the surface electromyography (sEMG) to estimate the exoskeleton joint torque. The proposed methodology offers three main advantages: (i) it reduces the number of electrodes needed to monitor the muscles, (ii) it eliminates the need for user force or pressure sensoring, and (iii) it reduces the real-time processing effort which is necessary for embedded implementation and portability. The exoskeleton is restricted to the right upper limb and the control methodology is validated evaluating the user performance while dynamically and statically handling a 3.1kg payload with and without the aid of the assistive device.
Obiajulu, Steven (Steven C. ). "Soft pneumatic artificial muscles with low threshold pressures for a cardiac compression device." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83730.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 45-47).
In this paper, I present the design, fabrication and characterization of fully soft pneumatic artificial muscles (PAMs) with low threshold pressures that are intended for direct cardiac compression (DCC). McKibben type PAMs typically have a threshold pressure of at least lOOkPa and require rigid end fittings which may damage soft tissue and cause local stress concentrations, and thus failure points in the actuator. The actuator design I present is a variant on the McKibben PAM with the following key differences: the nylon mesh is embedded in the elastomeric tube, and closure of the end of the tube is achieved without rigid ends. The actuators were tested to investigate the effects of mesh geometry and elastomer material on force output, contraction, and rise time. Lower initial braid angles and softer elastomer materials provided the best force, contraction, and rise times; Up to 50N of force, 24% contraction, and response times of 0.05s were achieved at 100kPa. The actuators exhibited low threshold pressures (<5kPa) and high rupture pressures (138kPa - 720kPa) which suggest safe operation for the DCC application. These results demonstrate that the actuators can achieve forces, displacements, and rise times suitable to assist with cardiac function.
by Steven Obiajulu.
S.B.
Pan, Min, Zhe Hao, Chenggang Yuan, and Andrew Plummer. "Development and control of smart pneumatic mckibben muscles for soft robots." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71262.
Full textAshwin, K. P. "Development of a Flexible Actuator and Motion Planning for Endoscopic Robots." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5435.
Full textNikkhah, Arman. "Mechanical design, dynamic modeling and control of hydraulic artificial muscles." Thesis, 2020. http://hdl.handle.net/1828/11999.
Full textGraduate
Γρυπάρης, Δημήτριος. "Ανάπτυξη και λειτουργία διπλού παράλληλου μηχανισμού με τεχνητούς πνευματικούς μύες." Thesis, 2014. http://hdl.handle.net/10889/8035.
Full textThis thesis, presents the development of a double parallel mechanism actuated by Pneumatic Artificial Muscles (PAMs) and controlled via LabView. The mechanical arrangement is a double parallel mechanism based on two modified Stewart platforms. PAMs have been used as platforms’ actuators and also non revolute double action pneumatic cylinders have been incorporated in order to support them at a user specified height. In addition two dual axis inclinometers have been utilized in order to provide the necessary angle feedback for the control loop. The pressure regulation in the PAMs and in the pneumatic cylinders is performed by proportional pressure regulators. In the Open Loop Operation, the mechanism can perform parallel or circular motions, in each platform independently or combined. The user chooses the range and the frequency of the performed motion. Furthermore the antagonistic operation of the PAMs has been studied. In the Closed Loop Operation the user inserts the platforms’ desired angles. A PID controller is implemented for every pair of antagonistic muscles, giving the necessary pressures in the antagonistic PAMs. All the control operations both in Open and Closed Loop are performed via National’s Instruments LabView software.
Γιαννίκος, Γεώργιος. "Μελέτη, κατασκευή και έλεγχος (με PLC) συστήματος ολισθαίνουσας συστοιχίας πνευματικών μυών." Thesis, 2013. http://hdl.handle.net/10889/6710.
Full text--
Book chapters on the topic "Miniaturized pneumatic artificial muscles"
Kurita, Yuichi, Chetan Thakur, and Swagata Das. "Assistive Soft Exoskeletons with Pneumatic Artificial Muscles." In Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life, 217–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34230-2_8.
Full textLee, Yong Kwun, and Isao Shimoyama. "A Skeletal Framework Artificial Hand Actuated by Pneumatic Artificial Muscles." In Morpho-functional Machines: The New Species, 131–43. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-67869-4_7.
Full textNoritsugu, Toshiro, Masahiro Takaiwa, and Daisuke Sasaki. "Pneumatic Rubber Artificial Muscles and Application to Welfare Robotics." In Next-Generation Actuators Leading Breakthroughs, 255–66. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-991-6_22.
Full textYan, Hua, Zhengyu Yang, Fei Ding, Shijie Xu, and Dengyin Zhang. "Design of a Peristaltic Pump Driven by Pneumatic Artificial Muscles." In Lecture Notes in Computer Science, 266–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24271-8_24.
Full textVanderborght, B., B. Verrelst, R. Van Ham, J. Vermeulen, J. Naudet, and D. Lefeber. "Control Architecture of LUCY, a Biped with Pneumatic Artificial Muscles." In Climbing and Walking Robots, 713–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-29461-9_70.
Full textVanderborght, Bram, Björn Verrelst, Ronald Van Ham, Michael Van Damme, and Dirk Lefeber. "Experimental Walking Results of LUCY, a Biped with Pneumatic Artificial Muscles." In Climbing and Walking Robots, 189–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_22.
Full textLo Piccolo, Mattia Vincenzo, Giovanni Gerardo Muscolo, and Carlo Ferraresi. "Use of Pneumatic Artificial Muscles in a Passive Upper Body Exoskeleton." In Mechanisms and Machine Science, 78–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76147-9_9.
Full textZhang, Hongbo, Yunshuang Li, Yipin Guo, Xinyi Chen, and Qinyuan Ren. "Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-Like Model." In Social Robotics, 824–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90525-5_79.
Full textYamazaki, Shota, Tatsuya Kishi, and Taro Nakamura. "Dynamic Characteristic Model for Pneumatic Artificial Muscles Considering Length of Air Tube." In Intelligent Robotics and Applications, 390–401. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22879-2_36.
Full textHitzmann, Arne, Shuhei Ikemoto, and Koh Hosoda. "Highly-Integrated Muscle-Spindles for Pneumatic Artificial Muscles Made from Conductive Fabrics." In Biomimetic and Biohybrid Systems, 171–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24741-6_15.
Full textConference papers on the topic "Miniaturized pneumatic artificial muscles"
Pillsbury, Thomas E., Ryan M. Robinson, and Norman M. Wereley. "Miniaturized Pneumatic Artificial Muscles Actuating a Bio-Inspired Robot Hand." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3262.
Full textKato, Tomonori, Kazuki Sakuragi, Mingzhao Cheng, Ryo Kakiyama, Yuta Matsunaga, and Manabu Ono. "Development of Miniaturized Rubber Muscle Actuator Driven by Gas-Liquid Phase Change." In BATH/ASME 2016 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpmc2016-1702.
Full textLee, Hyuk Jin, Baek Chul Kim, and Ja Choon Koo. "Development of a Novel Pneumatic Artificial Muscles Actuator Embedded Backbone and Position Sensor Using 3D-Printer." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47209.
Full textJien, Sumadi, Shinichi Hirai, Yoichiro Ogawa, Masahiko Ito, and Kenshin Honda. "Pressure control valve for McKibben artificial muscle actuators with miniaturized unconstrained pneumatic on/off valves." In 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2009. http://dx.doi.org/10.1109/aim.2009.5229882.
Full textKoter, K., L. Podsedkowski, and T. Szmechtyk. "Transversal Pneumatic Artificial Muscles." In 2015 10th International Workshop on Robot Motion and Control (RoMoCo). IEEE, 2015. http://dx.doi.org/10.1109/romoco.2015.7219741.
Full textMohseni, Omid, Ferreol Gagey, Gouping Zhao, Andre Seyfarth, and Maziar A. Sharbafi. "How far are Pneumatic Artificial Muscles from biological muscles?" In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9197177.
Full textWereley, Norman, Curt Kothera, Edward Bubert, Benjamin Woods, Michael Gentry, and Robert Vocke. "Pneumatic Artificial Muscles for Aerospace Applications." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2140.
Full textAL MA AITA, MALAK, MOHAMMAD AL, and MOUDAR ZGOUL. "Hysteresis Nonlinearities in Pneumatic artificial Muscles." In Fourth International Conference on Advances in Mechanical and Robotics Engineering - AMRE 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-115-3-35.
Full textGryparis, Dimitris, George Andrikopoulos, and Stamatis Manesis. "Parallel Robotic Manipulation via Pneumatic Artificial Muscles." In 11th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0005008700290036.
Full textVENEVA, IVANKA. "NEW PROPULSION SYSTEM WITH PNEUMATIC ARTIFICIAL MUSCLES." In Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814525534_0031.
Full text