Academic literature on the topic 'Mini/microchannel absorber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mini/microchannel absorber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mini/microchannel absorber"
Kurniawati, Ischia, and Yonmo Sung. "A Review of Heat Dissipation and Absorption Technologies for Enhancing Performance in Photovoltaic–Thermal Systems." Energies 17, no. 7 (April 3, 2024): 1721. http://dx.doi.org/10.3390/en17071721.
Full textDissertations / Theses on the topic "Mini/microchannel absorber"
Cheng, Hao. "Etude d'absorption chimique du dioxyde de carbone : transfert de masse en écoulement diphasique dans un minicanal et conception d'un nouvel absorbeur multicanaux." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4030.
Full textMicro/minichannel devices show great interests for their potential in efficient CO2 chemical absorption in the context of the carbon capture. This PhD these aims to characterize and investigate the transport mechanisms involved in chemical reactionaccompanied two-phase mass transfer in minichannel, and to design and develop novel miniaturized CO2 absorbers featuring intensified structures and optimized absorption performances. Firstly, bubble dynamics within a T-junction straight minichannel were optically observed, showing that the chemical reaction tends to suppress bubble breakup while promoting its shrinkage. Then, the velocity field and CO2 concentration field in the liquid slug were determined using PTV and pH-sensitive colorimetry, respectively, permitting the development of a modified unit-cell mass transfer model that incorporates the effects of flow recirculation and chemical reaction. Further enhancement was achieved by embedding a spiral distributed baffle structure into the minichannel, leading to a significant increase in mass transfer coefficient with only a minor rise in pressure drop. Finally, building on this intensification measure, a novel design for an integrated multichannel CO2 absorber was proposed, featuring paralleling units of conjugated double-helix cross minichannels (Codohec). A lab-scale module of this design was realized, and its absorption performance was comprehensively evaluated, highlighting various advantages including a high mass transfer coefficient, acceptable energy consumption, high remove rate, and large CO2 treatment capacity. These findings may provide new insights into the underlying transport mechanisms of chemical reaction-accompanied gas-liquid mass transfer and contribute to the design and optimization of highly efficient miniaturized CO2 absorbers for industry applications
Conference papers on the topic "Mini/microchannel absorber"
Jenks, Jeromy, and Vinod Narayanan. "Effect of Channel Geometry Variations on the Performance of a Microscale Bubble Absorber." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32445.
Full textJenks, Jeromy, and Vinod Narayanan. "An Experimental Study of Ammonia-Water Bubble Absorption in a Large Aspect Ratio Microchannel." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14036.
Full textGulati, Shelly, Janpierre A. Bonoan, Kylee V. Schesser, Joshua F. Arucan, and Xiaoling Li. "Microfluidic Measurements of Drug Dissolution Using a Quartz Crystal Microbalance." In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7930.
Full textDeniz, Emrah, and Nur Pehlivanoglu. "Numerical Investigation of Turbulence Models for Minichannels." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30083.
Full text