Dissertations / Theses on the topic 'Mime de Superoxyde Dismutase (SOD)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Mime de Superoxyde Dismutase (SOD).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mathieu, Émilie. "Anti-oxidant Mn(II)-complexes : design and study in a cellular model of inflammatory diseases. Investigation of subcellular location." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066428.
Full textReactive oxygen species (ROS) are produced continuously in all aerobic organisms and are involved in cell signaling, defenses against pathogens, but also oxidative stress. This latter corresponds to an imbalance between ROS production and their consumption by the antioxidant defenses of the cell. Oxidative stress is associated with numerous pathologies, such as inflammatory bowel diseases (IBD). Among the metalloenzymes controlling the concentration of ROS, superoxide dismutases (SOD) play a crucial role. These enzymes are responsibles for the regulation of superoxide, the first ROS produced by the reduction of oxygen. In this work, Mn(II) complexes mimicking the activity of the Mn-SOD (SODm) were designed using a biomimetic approach. Their relevance to limit oxidative stress and inflammation in a cellular model of IBD was investigated. In particular, their biological activity was studied in light of their physico-chemical properties and of their bioavailability. The results obtained with a parent complex led to the design of a second generation of SOD mimics conjugated with a single core multimodal probe, cell-penetrating peptides, or mitochondria-penetrating peptides. An effect of electrostatic interactions on the catalytic rate constant of the parent complex functionalized with polyarginines peptides was demonstrated, similarly to what is observed for the enzyme. In the continuity of the biomimetic approach envisioned here, the design of de novo SOD mimics is presented and constitutes a first step toward the mimicry of second sphere influence
Zoumpoulaki, Martha. "MnSOD Mimics : analytical mass spectrometry-based techniques to quantify their amount and biological effect in inflamed intestinal epithelial cells." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS518.
Full textThe intracellular imbalance between antioxidants and pro-oxidants is involved in the development of many pathologies (like chronic inflammatory bowel diseases-IBD). The fact that manganese superoxide dismutase (MnSOD) is the first line of antioxidant defense led us to study the role of MnSOD mimics as anti-inflammatory agents in the context of IBD. Mn1 is easily synthesized, stable, with good intrinsic anti-superoxide activity and anti-inflammatory activity on intestinal epithelial cells (HT29-MD2). The presence of intact Mn1 (ligand+Mn2+) inside HT29-MD2, created to study intestinal inflammation, was demonstrated using mass spectrometry (IMSMS). After 6h of incubation with 100 µM Mn1 and with LPS 0.1 µg/mL, Mn1 was detected intact with an estimated intracellular concentration of 10 µM. Using the OcSILAC strategy, making possible to simultaneously quantify protein expression and oxidation at the proteome-wide cysteine level, it has been demonstrated that an oxidation was induced by LPS from 15min (in the organelles fraction, including mitochondria) and was resolved after 6h-LPS, with an overexpression of MnSOD (after 3h). When coincubated with LPS, Mn1 limited the total protein oxidation at 15min (70% in the membranes/organelles) and compensate for MnSOD at 6h. Mn1 also restored to their basal levels most of the proteins that were under and overexpressed upon LPS activation. Our results thus demonstrate the potential of Mn1 as a new therapeutic agent against IBD
Roy, Monica. "Étude des superoxyde dismutases (SOD) dans l'oviducte bovin." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25279/25279.pdf.
Full textOlofsson, Eva. "Superoxide dismutase 1 and cataract." Doctoral thesis, Umeå : Umeå universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-21032.
Full textZetterström, Per. "Misfolded superoxide dismutase-1 in amyotrophic lateral sclerosis." Doctoral thesis, Umeå universitet, Klinisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43898.
Full textJonsson, P. Andreas. "Superoxide dismutase 1 and amyotrophic lateral sclerosis." Doctoral thesis, Umeå : Medical Biosciences, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-611.
Full textBergemalm, Daniel. "Mutant superoxide dismutase-1-caused pathogenesis in amyotrophic lateral sclerosis." Doctoral thesis, Umeå : Umeå university, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-31116.
Full textKattan, Zilal. "Rôle de la superoxyde dismutase à manganèse et de la protéine damaged DNA binding 2 dans la croissance tumorale mammaire." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10040/document.
Full textRecently, our laboratory demonstrated for the first time, that Damaged DNA Binding 2 (DDB2) played a role as a negative transcriptional regulator on the mitochondrial superoxide dismutase (MnSOD) expression through its binding to a specific DNA sequence located into the promoter of MnSOD gene. DDB2 was known as a protein which participates in the nucleotide excision repair of DNA. The goal of this study was to define precisely the involvement of the both proteins in the growth of mammary adenocarcinoma cells, using experimental procedures to modulate their expression in the breast cancer cell lines. Our results show for the first time that MnSOD is overexpressed in the estrogen receptor (ER) negative and metastatic breast tumor cells, but not in normal epithelial mammary cells and ER-positive tumor cells. Inhibition of MnSOD expression stimulates proliferation but decreases the invasive ability and the metalloproteinase 9 activity of tumor cells. Elimination of H2O2 from the elevated MnSOD activity by addition of specific antioxidants decreases proliferation as well as invasive ability of tumor cells, suggesting that the role of MnSOD in the invasive ability of tumor cells is mediated by H2O2. We have shown too for the first time that DDB2 has an oncogenic activity in the ER-positive breast tumor cells, because its gene is overexpressed and stimulates the proliferation by activating the entry of cells in the G1/S transition phase and the S phase progression. In contrast to MnSOD, DDB2 expression is not observed in ER-negative breast tumor cells, but is higher in ER-positive than in ER-negative tumor samples from patients with breast carcinoma. Taken together, our findings demonstrate that both MnSOD and DDB2 play a role in the growth and invasiveness of tumor cells and may become a promising candidate as a predictive markers in breast cancer. More studies will be need to define molecular mechanism controlling this activity of these both proteins
Minig, Vanessa. "Etude du mécanisme de régulation du gène et de l'importance biologique de la superoxyde dismutase à manganèse dans la croissance tumorale mammaire." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10032/document.
Full textManganese superoxide dismutase (Mn SOD or SOD2) is an important enzyme in the antioxidizing defence, which seems to play an unclear role in the cancer development, according to the constitutive expression of its gene. However, the regulation of this constitutive expression is not totally known, particularly in the breast cancer cells. This work is based on a preliminary revealing that a protein, called Damaged DNA Binding 2 (DDB2), specifically binds the SOD2 gene promoter. The DDB2 is known for its involvement in the nucleotide excision repair. At first step, we characterized the specific DNA sequence recognized in the proximal area of the SOD2 gene promoter, on which a DDB2 monomer binds, in order to regulate negatively the Mn SOD transcription in the MCF-7 non metastatic breast cancer cells. Besides, DDB2 is not involved in the mechanism of SOD2 gene induction, when MCF-7 cells are exposed to induced substances. However, we showed that the lack of the DDB2 protein, associated with the lack of the AP-2a transcription factor, already known as a repressor of the SOD2 gene, lead to a high Mn SOD constitutive expression in the metastatic breast cancer cells. Furthermore, this high constitutive expression is mainly dependent of the Sp1 transcription factor. Secondly, we estimated the biological meaning of the regulation of the Mn SOD constitutive expression by the DDB2 in the breast cancer cells. Our results show that the DDB2 activates the positive ER breast cancer cell proliferation, by exercising its negative regulation on the Mn SOD expression. Thirdly, we tried to show the consequences on the negative ER breast cancer cell growth, which naturally and highly express the Mn SOD. Our results reveal that the antioxidizing enzyme plays an important role in the molecular mechanisms involved in the invasive capacities of the negative ER breast cancer cells. The high Mn SOD expression, associated in a decrease of the H2O2 detoxifying enzymes expression, enhance the negative ER breast cancer cell invasion and an increase of the matrix metallopeptidase-9 activity. The H2O2 elimination, with specific antioxidants, decreases both negative ER breast cancer cell growth and invasive capacities. This whole work contributes to better understand the Mn SOD importance and the mechanism of its gene regulation, in the tumoral growth and invasion. This work also reveals the Mn SOD and DDB2 as potential predictive factors of the breast cancer progress. Finally, the discovery of this new DDB2 biological activity opens a huge field of interesting perspectives in breast cancer research
Domergue, Jérémy. "Modulation de l'activité SOD par contrôle de la sphère de coordination du Ni(II) dans des complexes bioinspirés." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV023.
Full textThe superoxide radical anion, O2●-, is generated by many life processes. Its radical properties make it a highly reactive species able to damage all macromolecules contributing to the pathogenesis of many diseases including neurodegenerative disorders. In order to protect cells against O2●-, Nature uses superoxide dismutases (SODs) which catalyze the dismutation of O2●- into hydrogen peroxide and oxygen. The last discovered SOD contains a nickel cofactor. Importantly the NiSOD is found in several pathogenic bacteria but not in humans. Therefore targeting the NiSOD is a promising approach to develop antibiotics. Secondly, the development of novel SOD mimics may have potential uses as therapeutic agents in oxidative stress-related diseases. Our project aims at developing innovative active NiSOD mimics, based on the use of peptide-based ligands with two main objectives: (i) to develop efficient SOD like catalysts, active in water, displaying antioxidant properties for potential therapeutic applications and (ii) to contribute to the full understanding of the catalytic mechanism of the NiSOD to highlight the specific key elements that differentiate NiSOD from the human MnSOD for the design of potential antibiotics. Our results show that, even with a coordination sphere different from the one in the enzyme, a good catalytic activity can be obtained. Key elements for the activity are also determined. Moreover, mechanistic studies indicates an inner sphere mechanism for superoxide reduction
Graffmo, Karin Sixtensdotter. "Of mice and men : SOD1 associated human amyotrophic lateral sclerosis and transgenic mouse models." Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1376.
Full textChang, Yueming. "Investigation of two early events in amyotrophic lateral sclerosis mRNA oxidation and up-regulation of a novel protective factor MSUR1 /." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196182155.
Full textStaerck, Cindy. "Etude de la réponse au stress oxydatif de Scedosporium apiospermum, un champignon filamenteux associé à la mucoviscidose." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0058/document.
Full textCystic fibrosis (CF) is the most common genetic disease in Caucasian populations. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of CF patients. In the respiratory tract, colonizations/infections lead to the recruitment of phagocytes which produce an oxidative stress, usually deleterious for pathogens. To defend themselves, pathogens have developed protective antioxidant systems, especially various enzymes. This thesis aimed to study the oxidative stress response in Scedosporium species. First, capacity of several Scedosporium isolates to germinate upon oxidative stress conditions was evaluated. Then, thirty-three genes potentially involved in protection against the oxidative stress were identified. Their overexpression in response to oxidants and in co-cultures with phagocytes suggested a crucial role, especially for one catalase, one peroxiredoxin and the two thioredoxin reductases. A mutant defective for the gene encoding a superoxide dismutase (SOD) anchored to the cell wall and specific for the conidia was produced. Auranofin, a thioredoxin reductase inhibitor, exhibits little anti-Scedosporium activity and an additive effect with triazole drugs. An ELISA was developed for serodiagnosis of scedosporiosis, using recombinant proteins derived from one catalase and a Cu/Zn-SOD. This sensitive and specific assay allows to differentiate Scedosporium infections from Aspergillus fumigatus infections and Scedosporium colonizations. Finally, these results indicate a crucial role of antioxidant enzymes in Scedosporium species, which could therefore be considered as virulence factors and as possible new therapeutic targets
Bertarello, Andrea. "Magic-angle Spinning NMR of paramagnetic metalloproteins." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN004/document.
Full textMost of our understanding of metalloproteins derives from atomic or molecular structures obtained from diffraction methods on single crystal samples. However, not all proteins are amenable for diffraction studies, and even when a highly-resolved structure is available, often the nature of the metal ion, its coordination geometry or its oxidation state are not determined. The aim of the present thesis is the investigation of structural properties of metal sites in paramagnetic metalloproteins by Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR). MAS NMR is a powerful technique for the investigation of biological systems, and may represent a direct probe of the structure at the active site of paramagnetic metalloproteins. However, it suffers from limited sensitivity and resolution when applied to nuclei close to a paramagnetic center.In this thesis, we address these limitations by developing NMR methods based on ultra-fast (60-111 kHz) MAS rates. A “toolkit” of suitably designed pulse sequences is built for the detection and the assignment of nuclei in close proximity of a paramagnetic center. State-of-the-art computational techniques are also employed to convert the experimental data into structural restraints for obtaining atomic-resolution geometries of active sites. We benchmark this approach with the study of Fe, Cu and Co sites in two microcrystalline proteins, and we also provide preliminary data on a non-diffracting divalent metal ion transporter in lipid membranes. We anticipate that the techniques described here are an essential tool to elucidate many currently unanswered questions about structure and function of metal sites in structural biology
Godrant, Aurélie. "The role of superoxide in iron acquisition by marine phytoplankton." Brest, 2009. http://www.theses.fr/2009BRES2061.
Full textIt is hypothesised that, under iron limitation, phytoplankton cells develop biochemical mechanisms to increase their iron uptake efficiency with one of these mechanisms involving the production of superoxide in the extracellular environment that increases the bioavailability of iron in seawater by reducing Fe(III) to the more soluble Fe(II). The main objectives of this work were 1) to develop an appropriate method to detect extracellular production of superoxide by marine phytoplankton, and 2) to examine the relationship between extracellular production of superoxide and iron acquisition by Trichodesmium erythraeum. A method to measure superoxyde production is described using red-CLA and MCLA probes, yielding considerable improvement for analysis compared to other available methods. Extracellular superoxide production and iron uptake rates were measured simultaneously on iron replete and iron deplete Trichodesmium erythraeum IMS 101 laboratory cultures : iron starvation leads to a 2. 9-fold increase in superoxide production rate and 10-fold decrease in the iron uptake rate (except when a reducing compound was added) compared to iron replete cultures. Extracellular superoxide production shows a pronounced circadian rythm in iron deplete cultures, but less so in iron replete cultures. Overall, no direct impact of extracellular superoxide production by Trichodesmium is observed, but both processes are shown to be related. Both iron deplete and iron replete cultures demonstrate greater ability to uptake iron bound to weaker iron-binding ligands such as citrate. Application of the method to field studies in the Great Barrier Reef lagoon showed an accumulation of biologically significant concentrations of reduced trace metals including Fe(II) when the concentration of superoxide was lower than 1 nM. When the concentration of superoxide was higher than 1 nM, most of the reduced species were oxidised resulting in high rates of hudrogen peroxide production rates, consistent with laboratory studies. Overall, this thesis permitted the development of a method to detect superoxide production rates by marine phytoplankton cells that could be used routinely in field studies. The observations are in accord with the conclusion that fit the ongoing hypothesis that the extablished Fe' uptake model for phytoplankton would be strongly influenced by such organisms that are able to modify the redox equilibrium of the solution at their cells surface
Roy, Monica. "Étude des superoxyde dismutases (SOD) dans l'oviducte bovin /." 2008. http://www.theses.ulaval.ca/2008/25279/25279.pdf.
Full textLin, Yanling. "The effect of SOD-2 knockout and overexpression on brain injury after ischemia and reperfusion in hyperglycemic mice." Thesis, 2007. http://hdl.handle.net/10125/20745.
Full text