Journal articles on the topic 'Millimeter-wave instrumentation'

To see the other types of publications on this topic, follow the link: Millimeter-wave instrumentation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Millimeter-wave instrumentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rodríguez, Luis F. "SpS1-Instrumentation for sub-millimeter spectroscopy." Proceedings of the International Astronomical Union 5, H15 (November 2009): 527–28. http://dx.doi.org/10.1017/s1743921310010525.

Full text
Abstract:
The fields of millimeter and sub-millimeter interferometry have been developing for more than 30 years. At millimeter wavelengths the most important interferometers are the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Nobeyama Millimeter Array (NMA). At sub-millimeter wavelenghts, the most powerful interferometer is the SubMillimeter Array (SMA, for a detailed description, see Ho et al. 2004).
APA, Harvard, Vancouver, ISO, and other styles
2

Kubota, S., W. A. Peebles, X. V. Nguyen, N. A. Crocker, and A. L. Roquemore. "Ultrafast millimeter-wave frequency-modulated continuous-wave reflectometry for NSTX." Review of Scientific Instruments 77, no. 10 (October 2006): 10E926. http://dx.doi.org/10.1063/1.2351894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhadobov, Maxim, Nacer Chahat, Ronan Sauleau, Catherine Le Quement, and Yves Le Drean. "Millimeter-wave interactions with the human body: state of knowledge and recent advances." International Journal of Microwave and Wireless Technologies 3, no. 2 (March 1, 2011): 237–47. http://dx.doi.org/10.1017/s1759078711000122.

Full text
Abstract:
The biocompatibility of millimeter-wave devices and systems is an important issue due to the wide number of emerging body-centric wireless applications at millimeter waves. This review article provides the state of knowledge in this field and mainly focuses on recent results and advances related to the different aspects of millimeter-wave interactions with the human body. Electromagnetic, thermal, and biological aspects are considered and analyzed for exposures in the 30-100 GHz range with a particular emphasis on the 60-GHz band. Recently introduced dosimetric techniques and specific instrumentation for bioelectromagnetic laboratory studies are also presented. Finally, future trends are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Petroff, Matthew, John Appel, Karwan Rostem, Charles L. Bennett, Joseph Eimer, Tobias Marriage, Joshua Ramirez, and Edward J. Wollack. "A 3D-printed broadband millimeter wave absorber." Review of Scientific Instruments 90, no. 2 (February 2019): 024701. http://dx.doi.org/10.1063/1.5050781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nozokido, Tatsuo, Ryohei Iibuchi, Jongsuck Bae, Koji Mizuno, and Hiroyuki Kudo. "Millimeter-wave scanning near-field anisotropy microscopy." Review of Scientific Instruments 76, no. 3 (March 2005): 033702. http://dx.doi.org/10.1063/1.1866255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz, R., A. Guarnieri, J. ‐U Grabow, and J. Doose. "A new Fourier transform millimeter wave spectrometer." Review of Scientific Instruments 63, no. 9 (September 1992): 4108–11. http://dx.doi.org/10.1063/1.1143220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monaco, R. "Josephson millimeter wave oscillators." International Journal of Infrared and Millimeter Waves 11, no. 4 (April 1990): 533–64. http://dx.doi.org/10.1007/bf01009578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stern, Richard A., and Richard W. Babbitt. "Millimeter wave microstrip circulator." International Journal of Infrared and Millimeter Waves 7, no. 11 (November 1986): 1707–13. http://dx.doi.org/10.1007/bf01010071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cupido, L., S. Graca, G. D. Conway, M. Manso, and F. Serra. "Frequency hopping millimeter-wave reflectometry in ASDEX upgrade." Review of Scientific Instruments 77, no. 10 (October 2006): 10E915. http://dx.doi.org/10.1063/1.2235206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alekseev, Yu I., and A. V. Dem’yanenko. "A millimeter-wave oscillator on an avalanche diode." Instruments and Experimental Techniques 52, no. 6 (November 2009): 814–15. http://dx.doi.org/10.1134/s0020441209060104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mase, A., M. Ohashi, A. Yamamoto, H. Negishi, N. Oyama, Y. Nagayama, K. Kawahata, et al. "Application of millimeter-wave imaging system to LHD." Review of Scientific Instruments 72, no. 1 (January 2001): 375–78. http://dx.doi.org/10.1063/1.1309004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ranvier, Sylvain, Jarmo Kivinen, and Pertti Vainikainen. "Millimeter-Wave MIMO Radio Channel Sounder." IEEE Transactions on Instrumentation and Measurement 56, no. 3 (June 2007): 1018–24. http://dx.doi.org/10.1109/tim.2007.894197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khan, Hayat Mohd. "Millimeter wave QWITT diode oscillator." International Journal of Infrared and Millimeter Waves 12, no. 2 (February 1991): 79–88. http://dx.doi.org/10.1007/bf01009881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tischer, F. J. "Domino-type millimeter-wave systems." International Journal of Infrared and Millimeter Waves 6, no. 8 (August 1985): 675–86. http://dx.doi.org/10.1007/bf01011945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

McMillan, R. W., R. A. Bohlander, and W. J. Baldygo. "Millimeter-wave atmospheric turbulence measurements: Instrumentation, selected results, and system effects." International Journal of Infrared and Millimeter Waves 18, no. 1 (January 1997): 233–58. http://dx.doi.org/10.1007/bf02677909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Veremey, N. V., and Yu V. Majstrenko. "Flicker noise in millimeter-wave backward wave oscillators." International Journal of Infrared and Millimeter Waves 15, no. 10 (October 1994): 1603–9. http://dx.doi.org/10.1007/bf02096887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kubota, S., W. A. Peebles, X. V. Nguyen, and A. L. Roquemore. "Automatic profile reconstruction for millimeter-wave frequency-modulated continuous-wave reflectometry on NSTX." Review of Scientific Instruments 74, no. 3 (March 2003): 1477–80. http://dx.doi.org/10.1063/1.1530391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chuss, D. T., J. R. Eimer, D. J. Fixsen, J. Hinderks, A. J. Kogut, J. Lazear, P. Mirel, E. Switzer, G. M. Voellmer, and E. J. Wollack. "Variable-delay polarization modulators for cryogenic millimeter-wave applications." Review of Scientific Instruments 85, no. 6 (June 2014): 064501. http://dx.doi.org/10.1063/1.4879499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Annino, G., M. Cassettari, and M. Martinelli. "Open nonradiative cavities as millimeter wave single-mode resonators." Review of Scientific Instruments 76, no. 6 (June 2005): 064702. http://dx.doi.org/10.1063/1.1929607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Eskelinen, Pekka, Jukka Ruoskanen, and Jouni Peltonen. "Microcontroller-based binary integrator for millimeter-wave radar experiments." Review of Scientific Instruments 81, no. 5 (May 2010): 054704. http://dx.doi.org/10.1063/1.3424852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zou, Luyao, Roman A. Motiyenko, Laurent Margulès, and Eugen A. Alekseev. "Millimeter-wave emission spectrometer based on direct digital synthesis." Review of Scientific Instruments 91, no. 6 (June 1, 2020): 063104. http://dx.doi.org/10.1063/5.0004461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Furtula, V., P. K. Michelsen, F. Leipold, M. Salewski, S. B. Korsholm, F. Meo, S. K. Nielsen, M. Stejner, D. Moseev, and T. Johansen. "Broadband notch filter design for millimeter-wave plasma diagnostics." Review of Scientific Instruments 81, no. 10 (October 2010): 10D913. http://dx.doi.org/10.1063/1.3478881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dou, W. B., and Z. L. Sun. "Millimeter wave ferrite circulators and rotators." International Journal of Infrared and Millimeter Waves 17, no. 12 (December 1996): 2035–131. http://dx.doi.org/10.1007/bf02069488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shan, Chen Ru, and Edward K. N. Yung. "Millimeter wave wideband FET frequency divider." International Journal of Infrared and Millimeter Waves 18, no. 1 (January 1997): 185–93. http://dx.doi.org/10.1007/bf02677905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Brand, G. F. "A millimeter-wave geometric phase interferometer." International Journal of Infrared and Millimeter Waves 18, no. 9 (September 1997): 1655–62. http://dx.doi.org/10.1007/bf02678277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xue, Cheng-tian, Qiao-min Wang, and Rong-lin Ding. "A novel millimeter wave gunn oscillator." International Journal of Infrared and Millimeter Waves 18, no. 12 (December 1997): 2307–13. http://dx.doi.org/10.1007/bf02678391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jiang, Xiao-hong, and Wei Hong. "Cad of millimeter wave power combiners." International Journal of Infrared and Millimeter Waves 13, no. 7 (July 1992): 941–53. http://dx.doi.org/10.1007/bf01009619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hongfu, Li, and Du Pinzhong. "A study of millimeter wave cusptron." International Journal of Infrared and Millimeter Waves 13, no. 9 (September 1992): 1341–51. http://dx.doi.org/10.1007/bf01009991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Suto, Shozo, Mikihiko Ikezawa, and Koji Mizuno. "Millimeter wave spectrophotometry by the Ledatron." International Journal of Infrared and Millimeter Waves 6, no. 11 (November 1985): 1139–46. http://dx.doi.org/10.1007/bf01019857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Cheh-Ming, Emilio A. Sovero, Wu Jing Ho, J. A. Higgins, and David B. Rutledge. "A millimeter-wave monolithic grid amplifier." International Journal of Infrared and Millimeter Waves 16, no. 11 (November 1995): 1901–9. http://dx.doi.org/10.1007/bf02072546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gl�ckler, Roman. "Phased array for millimeter wave frequencies." International Journal of Infrared and Millimeter Waves 11, no. 2 (February 1990): 101–10. http://dx.doi.org/10.1007/bf01010509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stern, Richard A., Richard W. Babbitt, John Borowick, Gerald Mikucki, and William Bayha. "A millimeter wave dielectric waveguide antenna." International Journal of Infrared and Millimeter Waves 6, no. 10 (October 1985): 999–1016. http://dx.doi.org/10.1007/bf01010677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yu, J. H., Y. T. Chang, K. Y. Lin, C. C. Chang, S. F. Chang, Y. Ye, A. V. Pham, et al. "Millimeter-wave system-on-chip advancement for fusion plasma diagnostics." Review of Scientific Instruments 89, no. 10 (October 2018): 10H108. http://dx.doi.org/10.1063/1.5035559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Felici, F., T. Goodman, O. Sauter, T. Shimozuma, S. Ito, Y. Mizuno, S. Kubo, and T. Mutoh. "Real-time feedback control of millimeter-wave polarization for LHD." Review of Scientific Instruments 80, no. 1 (January 2009): 013504. http://dx.doi.org/10.1063/1.3073735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nam, Y. U., and K. D. Lee. "A 280GHz single-channel millimeter-wave interferometer system for KSTAR." Review of Scientific Instruments 79, no. 10 (October 2008): 10E705. http://dx.doi.org/10.1063/1.2957924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gopalsami, N., H. T. Chien, A. Heifetz, E. R. Koehl, and A. C. Raptis. "Millimeter wave detection of nuclear radiation: An alternative detection mechanism." Review of Scientific Instruments 80, no. 8 (August 2009): 084702. http://dx.doi.org/10.1063/1.3206114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Adachi, S., M. Hattori, F. Kanno, K. Kiuchi, T. Okada, and O. Tajima. "Production method of millimeter-wave absorber with 3D-printed mold." Review of Scientific Instruments 91, no. 1 (January 1, 2020): 016103. http://dx.doi.org/10.1063/1.5132871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mola, Monty, Stephen Hill, Philippe Goy, and Michel Gross. "Instrumentation for millimeter-wave magnetoelectrodynamic investigations of low-dimensional conductors and superconductors." Review of Scientific Instruments 71, no. 1 (January 2000): 186–200. http://dx.doi.org/10.1063/1.1150182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, X. X., S. F. He, D. H. Xia, Z. J. Wang, and Y. Pan. "Synthesis of two quasi-optical polarizers for the multi-frequency high-power millimeter wave system." Review of Scientific Instruments 93, no. 10 (October 1, 2022): 104707. http://dx.doi.org/10.1063/5.0110833.

Full text
Abstract:
Millimeter wave systems based on powerful gyrotron can deliver megawatt microwave power, which is an important auxiliary heating method for magnetic confinement fusion devices. Reflective gratings are normally used as quasi-optical polarizers for polarization control of the wave in such systems. Based on the coordinate transformation method, we developed a numerical code to study the broadband polarization strategy. By considering the synthesis of two polarizers, we designed a pair of polarizers in the W band. Calculation results indicated that almost arbitrary polarization can be achieved in a wide frequency range. To verify the design, we set up a low-power test platform and experiments were carried out. The performance of the polarizers was tested from 80 to 105 GHz with a step of 5 GHz. The test results agreed well with the numerical results, indicating that the design is reasonable. With the development of multi-frequency gyrotrons, the study in this paper can be used as a reference for the design of broadband polarizers of multi-frequency millimeter wave systems.
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Xiaoming, Lu Gan, and Bin Yang. "Millimeter-wave free-space dielectric characterization." Measurement 179 (July 2021): 109472. http://dx.doi.org/10.1016/j.measurement.2021.109472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Abdalmalak, Kerlos Atia, Gabriel Santamaria Botello, Mallika Irene Suresh, Enderson Falcón-Gómez, Alejandro Rivera Lavado, and Luis Enrique García-Muñoz. "An Integrated Millimeter-Wave Satellite Radiometer Working at Room-Temperature with High Photon Conversion Efficiency." Sensors 22, no. 6 (March 21, 2022): 2400. http://dx.doi.org/10.3390/s22062400.

Full text
Abstract:
In this work, the design of an integrated 183GHz radiometer frontend for earth observation applications on satellites is presented. By means of the efficient electro-optic modulation of a laser pump with the observed millimeter-wave signal followed by the detection of the generated optical sideband, a room-temperature low-noise receiver frontend alternative to conventional Low Noise Amplifiers (LNAs) or Schottky mixers is proposed. Efficient millimeter-wave to 1550 nm upconversion is realized via a nonlinear optical process in a triply resonant high-Q Lithium Niobate (LN) Whispering Gallery Mode (WGM) resonator. By engineering a micromachined millimeter-wave cavity that maximizes the overlap with the optical modes while guaranteeing phase matching, the system has a predicted normalized photon-conversion efficiency ≈10−1 per mW pump power, surpassing the state-of-the-art by around three orders of magnitude at millimeter-wave frequencies. A piezo-driven millimeter-wave tuning mechanism is designed to compensate for the fabrication and assembly tolerances and reduces the complexity of the manufacturing process.
APA, Harvard, Vancouver, ISO, and other styles
42

Hu, Haifeng, Baoju Liu, and Dongfei Wang. "A Continuously Tunable and Filter-Less QPSK Modulated Millimeter-Wave Signal Generation with Frequency Quadrupling Just Based on an MZM." Photonics 9, no. 7 (July 7, 2022): 474. http://dx.doi.org/10.3390/photonics9070474.

Full text
Abstract:
In this paper, we propose a new frequency quadrupling scheme to generate a quadrature phase shift keying (QPSK) modulated vector millimeter-wave signal, in which an optical filter is not necessary. To eliminate constellation overlapping of the generated vector millimeter-wave signal caused by phase multiplication in the process of frequency multiplication, a precoding assisted technique is adopted. The principle and feasibility of the proposed scheme is deduced by a detailed mathematical formula. Simulations are carried out to generate 40 GHz QPSK modulated vector millimeter-wave signals using a 10 GHz radio frequency source and the BER performance is analyzed in detail. The results show that BER of the generated 5/10-Gbaud vector millimeter-wave signal is below 3.8 × 10−3, when the input optical power for into photo-detector is higher than −20.67 dBm.
APA, Harvard, Vancouver, ISO, and other styles
43

Ganapolskii, E. M., Z. E. Eremenko, and V. N. Skresanov. "A millimeter wave dielectrometer for high loss liquids based on the Zenneck wave." Measurement Science and Technology 20, no. 5 (March 27, 2009): 055701. http://dx.doi.org/10.1088/0957-0233/20/5/055701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jose, Ebi, Martin Adams, John Stephen Mullane, and Nicholas M. Patrikalakis. "Predicting Millimeter Wave Radar Spectra for Autonomous Navigation." IEEE Sensors Journal 10, no. 5 (May 2010): 960–71. http://dx.doi.org/10.1109/jsen.2009.2037013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rastogi, A. K. "Shielded rectangular dielectric wave guides for millimeter wave integrated circuits." International Journal of Infrared and Millimeter Waves 14, no. 1 (January 1993): 47–65. http://dx.doi.org/10.1007/bf02274715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mohyuddin, Wahab, Dong Sik Woo, Hyun Chul Choi, and Kang Wook Kim. "A practical double-sided frequency selective surface for millimeter-wave applications." Review of Scientific Instruments 89, no. 2 (February 2018): 024703. http://dx.doi.org/10.1063/1.5023406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Porte, L., C. L. Rettig, W. A. Peebles, and X. Ngyuen. "Design and operation of a low cost, reliable millimeter-wave interferometer." Review of Scientific Instruments 70, no. 1 (January 1999): 1082–84. http://dx.doi.org/10.1063/1.1149372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pooley, David T., Colin Gibson, William R. Stewart, John Magee, Brian N. Ellison, and David Lloyd. "Biological effects of millimeter-wave radiation: A high-throughput screening system." Review of Scientific Instruments 74, no. 3 (March 2003): 1296–302. http://dx.doi.org/10.1063/1.1542665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hsu, P. L., B. H. Deng, J. Wang, C. W. Domier, and N. C. Luhmann. "Millimeter-wave imaging array development for microwave reflectometry and ECE imaging." Review of Scientific Instruments 72, no. 1 (January 2001): 364–67. http://dx.doi.org/10.1063/1.1309002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lizhi, Xiong, Qi Lanfen, and Zhu Huabin. "Smart Antenna for Indoor Millimeter Wave Communication." International Journal of Infrared and Millimeter Waves 24, no. 12 (December 2003): 2095–104. http://dx.doi.org/10.1023/b:ijim.0000009765.67014.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography