Journal articles on the topic 'MIDBRAIN ORGANOIDS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MIDBRAIN ORGANOIDS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tejchman, Anna, Agnieszka Znój, Paula Chlebanowska, Aneta Frączek-Szczypta, and Marcin Majka. "Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development." International Journal of Molecular Sciences 21, no. 17 (August 19, 2020): 5959. http://dx.doi.org/10.3390/ijms21175959.
Full textMohamed, Nguyen-Vi, Meghna Mathur, Ronan V. da Silva, Rhalena A. Thomas, Paula Lepine, Lenore K. Beitel, Edward A. Fon, and Thomas M. Durcan. "Generation of human midbrain organoids from induced pluripotent stem cells." MNI Open Research 3 (February 11, 2021): 1. http://dx.doi.org/10.12688/mniopenres.12816.2.
Full textMohamed, Nguyen-Vi, Meghna Mathur, Ronan V. da Silva, Lenore K. Beitel, Edward A. Fon, and Thomas M. Durcan. "Generation of human midbrain organoids from induced pluripotent stem cells." MNI Open Research 3 (April 3, 2019): 1. http://dx.doi.org/10.12688/mniopenres.12816.1.
Full textChlebanowska, Paula, Anna Tejchman, Maciej Sułkowski, Klaudia Skrzypek, and Marcin Majka. "Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson’s Disease." International Journal of Molecular Sciences 21, no. 3 (January 21, 2020): 694. http://dx.doi.org/10.3390/ijms21030694.
Full textSmits, Lisa M., Stefano Magni, Kaoru Kinugawa, Kamil Grzyb, Joachim Luginbühl, Sonia Sabate-Soler, Silvia Bolognin, et al. "Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids." Cell and Tissue Research 382, no. 3 (July 31, 2020): 463–76. http://dx.doi.org/10.1007/s00441-020-03249-y.
Full textZanetti, Cristian, Sarah Spitz, Emanuel Berger, Silvia Bolognin, Lisa M. Smits, Philipp Crepaz, Mario Rothbauer, et al. "Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson's disease modelling and drug screening." Analyst 146, no. 7 (2021): 2358–67. http://dx.doi.org/10.1039/d0an02206c.
Full textTieng, Vannary, Luc Stoppini, Sabrina Villy, Marc Fathi, Michel Dubois-Dauphin, and Karl-Heinz Krause. "Engineering of Midbrain Organoids Containing Long-Lived Dopaminergic Neurons." Stem Cells and Development 23, no. 13 (July 2014): 1535–47. http://dx.doi.org/10.1089/scd.2013.0442.
Full textMonzel, Anna S., Kathrin Hemmer, Tony Kaoma, Lisa M. Smits, Silvia Bolognin, Philippe Lucarelli, Isabel Rosety, et al. "Machine learning-assisted neurotoxicity prediction in human midbrain organoids." Parkinsonism & Related Disorders 75 (June 2020): 105–9. http://dx.doi.org/10.1016/j.parkreldis.2020.05.011.
Full textZagare, Alise, Matthieu Gobin, Anna S. Monzel, and Jens C. Schwamborn. "A robust protocol for the generation of human midbrain organoids." STAR Protocols 2, no. 2 (June 2021): 100524. http://dx.doi.org/10.1016/j.xpro.2021.100524.
Full textLin, Yi, Benjamin Liou, Jason Hammonds, Christopher N. Mayhew, and Ying Sun. "Modeling neuronopathic Gaucher disease with human patient-specific midbrain organoids." Molecular Genetics and Metabolism 135, no. 2 (February 2022): S75. http://dx.doi.org/10.1016/j.ymgme.2021.11.191.
Full textMonzel, Anna S., Lisa M. Smits, Kathrin Hemmer, Siham Hachi, Edinson Lucumi Moreno, Thea van Wuellen, Javier Jarazo, et al. "Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells." Stem Cell Reports 8, no. 5 (May 2017): 1144–54. http://dx.doi.org/10.1016/j.stemcr.2017.03.010.
Full textKim, Hongwon, Hyeok Ju Park, Hwan Choi, Yujung Chang, Hanseul Park, Jaein Shin, Junyeop Kim, Christopher J. Lengner, Yong Kyu Lee, and Jongpil Kim. "Modeling G2019S-LRRK2 Sporadic Parkinson's Disease in 3D Midbrain Organoids." Stem Cell Reports 12, no. 3 (March 2019): 518–31. http://dx.doi.org/10.1016/j.stemcr.2019.01.020.
Full textBen-Reuven, Lihi, and Orly Reiner. "Toward Spatial Identities in Human Brain Organoids-on-Chip Induced by Morphogen-Soaked Beads." Bioengineering 7, no. 4 (December 18, 2020): 164. http://dx.doi.org/10.3390/bioengineering7040164.
Full textZagare, Alise, Kyriaki Barmpa, Semra Smajic, Lisa M. Smits, Kamil Grzyb, Anne Grünewald, Alexander Skupin, Sarah L. Nickels, and Jens C. Schwamborn. "Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression." American Journal of Human Genetics 109, no. 2 (February 2022): 311–27. http://dx.doi.org/10.1016/j.ajhg.2021.12.009.
Full textNickels, Sarah Louise, Jennifer Modamio, Bárbara Mendes-Pinheiro, Anna Sophia Monzel, Fay Betsou, and Jens Christian Schwamborn. "Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson’s disease." Stem Cell Research 46 (July 2020): 101870. http://dx.doi.org/10.1016/j.scr.2020.101870.
Full textSarrafha, Lily, Gustavo M. Parfitt, Ricardo Reyes, Camille Goldman, Elena Coccia, Tatyana Kareva, and Tim Ahfeldt. "High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells." STAR Protocols 2, no. 2 (June 2021): 100463. http://dx.doi.org/10.1016/j.xpro.2021.100463.
Full textJo, Junghyun, Lin Yang, Hoang‐Dai Tran, Weonjin Yu, Alfred Xuyang Sun, Ya Yin Chang, Byung Chul Jung, et al. "Lewy Body–like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and α‐Synuclein Mutations." Annals of Neurology 90, no. 3 (August 10, 2021): 490–505. http://dx.doi.org/10.1002/ana.26166.
Full textJo, Junghyun, Yixin Xiao, Alfred Xuyang Sun, Engin Cukuroglu, Hoang-Dai Tran, Jonathan Göke, Zi Ying Tan, et al. "Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons." Cell Stem Cell 19, no. 2 (August 2016): 248–57. http://dx.doi.org/10.1016/j.stem.2016.07.005.
Full textKim, Seung Won, Hye-Ji Woo, Eun Hee Kim, Hyung Sun Kim, Han Na Suh, Soo-hyun Kim, Jae-Jin Song, et al. "Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease." Progress in Neurobiology 204 (September 2021): 102086. http://dx.doi.org/10.1016/j.pneurobio.2021.102086.
Full textKwak, Tae Hwan, Ji Hyun Kang, Sai Hali, Jonghun Kim, Kee-Pyo Kim, Chanhyeok Park, Ju-Hyun Lee, et al. "Generation of homogeneous midbrain organoids with in vivo- like cellular composition facilitates neurotoxin-based Parkinson's disease modeling." STEM CELLS 38, no. 6 (February 28, 2020): 727–40. http://dx.doi.org/10.1002/stem.3163.
Full textBecerra-Calixto, Andrea, Abhisek Mukherjee, Santiago Ramirez, Sofia Sepulveda, Tirthankar Sinha, Rabab Al-Lahham, Nicole De Gregorio, Camila Gherardelli, and Claudio Soto. "Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson’s Disease Patient." Cells 12, no. 4 (February 15, 2023): 625. http://dx.doi.org/10.3390/cells12040625.
Full textBoussaad, Ibrahim, Carolin D. Obermaier, Zoé Hanss, Dheeraj R. Bobbili, Silvia Bolognin, Enrico Glaab, Katarzyna Wołyńska, et al. "A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson’s disease." Science Translational Medicine 12, no. 560 (September 9, 2020): eaau3960. http://dx.doi.org/10.1126/scitranslmed.aau3960.
Full textVeszelka, Szilvia, Mária Mészáros, Gergő Porkoláb, Anikó Szecskó, Nóra Kondor, Györgyi Ferenc, Tamás F. Polgár, et al. "A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model." Pharmaceutics 14, no. 1 (December 30, 2021): 86. http://dx.doi.org/10.3390/pharmaceutics14010086.
Full textMészáros, Mária, Thi Ha My Phan, Judit P. Vigh, Gergő Porkoláb, Anna Kocsis, Emese K. Páli, Tamás F. Polgár, et al. "Targeting Human Endothelial Cells with Glutathione and Alanine Increases the Crossing of a Polypeptide Nanocarrier through a Blood–Brain Barrier Model and Entry to Human Brain Organoids." Cells 12, no. 3 (February 3, 2023): 503. http://dx.doi.org/10.3390/cells12030503.
Full textBerger, Emanuel, Chiara Magliaro, Nicole Paczia, Anna S. Monzel, Paul Antony, Carole L. Linster, Silvia Bolognin, Arti Ahluwalia, and Jens C. Schwamborn. "Millifluidic culture improves human midbrain organoid vitality and differentiation." Lab on a Chip 18, no. 20 (2018): 3172–83. http://dx.doi.org/10.1039/c8lc00206a.
Full textYeap, Yee Jie, Tng J. W. Teddy, Mok Jung Lee, Micaela Goh, and Kah Leong Lim. "From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson’s Disease Modeling and Regenerative Therapy." International Journal of Molecular Sciences 24, no. 3 (January 28, 2023): 2523. http://dx.doi.org/10.3390/ijms24032523.
Full textChlebanowska, Paula, Maciej Sułkowski, Klaudia Skrzypek, Anna Tejchman, Agata Muszyńska, Rezvan Noroozi, and Marcin Majka. "Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons." International Journal of Molecular Sciences 21, no. 16 (August 9, 2020): 5705. http://dx.doi.org/10.3390/ijms21165705.
Full textSam, Richard, Yu Chen, Barbara Stubblefield, and Ellen Sidransky. "Development of a human 3D midbrain organoid model for investigating the link between glucocerebrosidase and Parkinson's disease." Molecular Genetics and Metabolism 129, no. 2 (February 2020): S142. http://dx.doi.org/10.1016/j.ymgme.2019.11.375.
Full textEze, Ugomma C., Aparna Bhaduri, Maximilian Haeussler, Tomasz J. Nowakowski, and Arnold R. Kriegstein. "Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia." Nature Neuroscience 24, no. 4 (March 15, 2021): 584–94. http://dx.doi.org/10.1038/s41593-020-00794-1.
Full textFiorenzano, Alessandro, Edoardo Sozzi, Marcella Birtele, Janko Kajtez, Jessica Giacomoni, Fredrik Nilsson, Andreas Bruzelius, et al. "Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids." Nature Communications 12, no. 1 (December 2021). http://dx.doi.org/10.1038/s41467-021-27464-5.
Full textAbbott, Joshua, Mitali Tambe, Ivan Pavlinov, Atena Farkhondeh, Ha Nam Nguyen, Miao Xu, Manisha Pradhan, et al. "Generation and characterization of NGLY1 patient-derived midbrain organoids." Frontiers in Cell and Developmental Biology 11 (February 16, 2023). http://dx.doi.org/10.3389/fcell.2023.1039182.
Full textLee, Youngsun, Ji Su Kang, On-Ju Ham, Mi-Young Son, and Mi-Ok Lee. "Gut metabolite trimethylamine N-oxide induces aging-associated phenotype of midbrain organoids for the induced pluripotent stem cell-based modeling of late-onset disease." Frontiers in Aging Neuroscience 14 (August 16, 2022). http://dx.doi.org/10.3389/fnagi.2022.925227.
Full textShang, Jia, Bin Li, Han Fan, Peidi Liu, Wen Zhao, Tao Chen, Pu Chen, and Longqiu Yang. "Sevoflurane promotes premature differentiation of dopaminergic neurons in hiPSC-derived midbrain organoids." Frontiers in Cell and Developmental Biology 10 (September 13, 2022). http://dx.doi.org/10.3389/fcell.2022.941984.
Full textMohamed, Nguyen-Vi, Julien Sirois, Janani Ramamurthy, Meghna Mathur, Paula Lépine, Eric Deneault, Gilles Maussion, et al. "Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy." Brain Communications, September 25, 2021. http://dx.doi.org/10.1093/braincomms/fcab223.
Full textSmits, Lisa M., Lydia Reinhardt, Peter Reinhardt, Michael Glatza, Anna S. Monzel, Nancy Stanslowsky, Marcelo D. Rosato-Siri, et al. "Modeling Parkinson’s disease in midbrain-like organoids." npj Parkinson's Disease 5, no. 1 (April 5, 2019). http://dx.doi.org/10.1038/s41531-019-0078-4.
Full textRenner, Henrik, Martha Grabos, Katharina J. Becker, Theresa E. Kagermeier, Jie Wu, Mandy Otto, Stefan Peischard, et al. "A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids." eLife 9 (November 3, 2020). http://dx.doi.org/10.7554/elife.52904.
Full textRenner, Henrik, Martha Grabos, Hans Schöler, and Jan Bruder. "Generation and Maintenance of Homogeneous Human Midbrain Organoids." BIO-PROTOCOL 11, no. 11 (2021). http://dx.doi.org/10.21769/bioprotoc.4049.
Full textRenner, Henrik, Katharina J. Becker, Theresa E. Kagermeier, Martha Grabos, Farsam Eliat, Patrick Günther, Hans R. Schöler, and Jan M. Bruder. "Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids." Frontiers in Molecular Neuroscience 14 (July 15, 2021). http://dx.doi.org/10.3389/fnmol.2021.715054.
Full textZhu, Wanying, Mengdan Tao, Yuan Hong, Shanshan Wu, Chu Chu, Zhilong Zheng, Xiao Han, et al. "Dysfunction of vesicular storage in young-onset Parkinson’s patient-derived dopaminergic neurons and organoids revealed by single cell electrochemical cytometry." Chemical Science, 2022. http://dx.doi.org/10.1039/d2sc00809b.
Full textSmits, Lisa Maria, and Jens Christian Schwamborn. "Midbrain Organoids: A New Tool to Investigate Parkinson’s Disease." Frontiers in Cell and Developmental Biology 8 (May 19, 2020). http://dx.doi.org/10.3389/fcell.2020.00359.
Full textWahlin, Karl J., Jie Cheng, Shawna L. Jurlina, Melissa K. Jones, Nicholas R. Dash, Anna Ogata, Nawal Kibria, et al. "CRISPR Generated SIX6 and POU4F2 Reporters Allow Identification of Brain and Optic Transcriptional Differences in Human PSC-Derived Organoids." Frontiers in Cell and Developmental Biology 9 (November 16, 2021). http://dx.doi.org/10.3389/fcell.2021.764725.
Full textLacalle-Aurioles, María. "Matisse and the Organoids: The Art of Science." Neuroscientist, October 3, 2020, 107385842096136. http://dx.doi.org/10.1177/1073858420961362.
Full textMagliaro, Chiara, and Arti Ahluwalia. "Clarifying mid-brain organoids: Application of the CLARITY protocol to unperfusable samples." Biomedical Science and Engineering, February 14, 2020. http://dx.doi.org/10.4081/bse.2019.113.
Full textKano, Masayoshi, Masashi Takanashi, Genko Oyama, Asako Yoritaka, Taku Hatano, Kahori Shiba-Fukushima, Makiko Nagai, et al. "Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations." npj Parkinson's Disease 6, no. 1 (November 13, 2020). http://dx.doi.org/10.1038/s41531-020-00137-8.
Full textSozzi, Edoardo, Fredrik Nilsson, Janko Kajtez, Malin Parmar, and Alessandro Fiorenzano. "Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells." Current Protocols 2, no. 9 (September 2022). http://dx.doi.org/10.1002/cpz1.555.
Full textGalet, Benjamin, Hélène Cheval, and Philippe Ravassard. "Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease." Frontiers in Neurology 11 (September 4, 2020). http://dx.doi.org/10.3389/fneur.2020.01005.
Full textSabate‐Soler, Sonia, Sarah Louise Nickels, Cláudia Saraiva, Emanuel Berger, Ugne Dubonyte, Kyriaki Barmpa, Yan Jun Lan, et al. "Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality." Glia, March 9, 2022. http://dx.doi.org/10.1002/glia.24167.
Full textHou, Yuxin, Chang Li, Chaemin Yoon, On Wah Leung, Sikun You, Xiaoming Cui, Jasper Fuk-Woo Chan, Duanqing Pei, Hoi Hung Cheung, and Hin Chu. "Enhanced replication of SARS-CoV-2 Omicron BA.2 in human forebrain and midbrain organoids." Signal Transduction and Targeted Therapy 7, no. 1 (November 20, 2022). http://dx.doi.org/10.1038/s41392-022-01241-2.
Full textBoussaad, Ibrahim, Gérald Cruciani, Silvia Bolognin, Paul Antony, Claire M. Dording, Yong-Jun Kwon, Peter Heutink, Eugenio Fava, Jens C. Schwamborn, and Rejko Krüger. "Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening." Scientific Reports 11, no. 1 (January 14, 2021). http://dx.doi.org/10.1038/s41598-021-81129-3.
Full textRodrigues, Paulla Vieira, João Vitor Pereira de Godoy, Beatriz Pelegrini Bosque, Dionísio Pedro Amorim Neto, Katiane Tostes, Soledad Palameta, Sheila Garcia-Rosa, Celisa Caldana Costa Tonoli, Hernandes Faustino de Carvalho, and Matheus de Castro Fonseca. "Transcellular propagation of fibrillar α-synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent." Scientific Reports 12, no. 1 (March 9, 2022). http://dx.doi.org/10.1038/s41598-022-08076-5.
Full text