Journal articles on the topic 'Microwave antenna element'

To see the other types of publications on this topic, follow the link: Microwave antenna element.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Microwave antenna element.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ALAM, SYAH, INDRA SURJATI, LYDIA SARI, and JUSTIN TANUWIJAYA. "Antena Mikrostrip Array 8x2 Elemen untuk Aplikasi Radio Gelombang Mikro." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 2 (April 4, 2021): 293. http://dx.doi.org/10.26760/elkomika.v9i2.293.

Full text
Abstract:
ABSTRAKPeningkatan gain pada antena mikrostrip polarisasi melingkar menggunakan metode array 8x2 element diusulkan dalam penelitian ini. Antena yang diusulkan dirancang untuk bekerja pada rentang frekuensi 10700 – 11700 MHz untuk sistem komunikasi radio gelombang mikro. Untuk meningkatkan gain, antena yang diusulkan di optimasi menggunakan array dengan 8x2 elemen. Dari hasil pengukuran diperoleh nilai return loss -22.77 dB dan VSWR sebesar 1.156. Bandwidth yang dihasilkan dari antena array 8x2 elemen adalah 900 MHz dengan rentang frekuensi kerja 10700 MHz -11600 MHz serta impedansi sebesar 55.87 + j 4.97 Ω pada frekuensi kerja 10925 GHz. Gain dari antena array 8x2 elemen adalah 15.6 dB pada frekuensi kerja 10925 MHz. Optimasi dengan metode array 8x2 elemen berhasil meningkatkan Gain sampai dengan 47.76 % dibandingkan dengan desain array 4x2 element. Antena yang diusulkan cocok dijadikan kandidat untuk digunakan pada sistem komunikasi radio gelombang mikro.Kata kunci: antena, mikrostrip, gain, array, radio gelombang mikro ABSTRACTGain optimization on a circular polarization microstrip antenna using the 8x2 element array method is proposed in this study. The proposed antenna is designed to work in the frequency range 10700 - 11700 MHz for microwave radio communication systems. To increase the gain, the proposed antenna is optimized using an array with 8x2 elements. From the measurement results obtained return value of -22.77 dB and VSWR of 1,156. The Bandwidth produced from the 8x2 element antenna array is 900 MHz with a working frequency range of 10700 MHz - 11600 MHz and an impedance of 55.87 + j 4.97 Ω at a working frequency of 10925 MHz. The gain of the 8x2 element array antenna is 15.6 dB at a working frequency of 10925 MHz. Optimization with the 8x2 element array method succeeded in increasing Gain by up to 47.76% compared to the 4x2 element array design. The proposed antenna is suitable as a candidate for use in microwave radio communication systems.Keywords: microstrip, antenna, gain, array, microwave radio
APA, Harvard, Vancouver, ISO, and other styles
2

Moradikordalivand, Alishir, Chee Yen Leow, Tharek Abd Rahman, Sepideh Ebrahimi, and Tien Han Chua. "Wideband MIMO antenna system with dual polarization for WiFi and LTE applications." International Journal of Microwave and Wireless Technologies 8, no. 3 (March 4, 2015): 643–50. http://dx.doi.org/10.1017/s175907871500032x.

Full text
Abstract:
In this paper a wideband multi-input multi-output (MIMO) antenna system for WiFi-LTE wireless access point (WAP) application is proposed. The MIMO antenna system consists of two common element microstrip-fed monopole antennas with dual polarization. Physically closed integration of MIMO antenna elements requires a special technique to increase the isolation between the antennas. A novel structure of parasitic element is introduced to improve the isolation between the antennas. The proposed MIMO antenna system is simulated and optimized using CST Microwave Studio. The designed antenna system is fabricated and measured to verify the simulation results. Reflection coefficient of less than −10 dB and isolation more than 15 dB are achieved in the operating frequency range of 2.3–2.9 GHz which covers WiFi 2.4 GHz and LTE 2.6 GHz bands. The proposed system also provides dual polarization with 10 dB polarization diversity gain and envelope correlation coefficient less than 0.15. Each individual antenna has a gain of 5.1 dB and 68% efficiency.
APA, Harvard, Vancouver, ISO, and other styles
3

Choudhary, Vipin, Manoj Kumar Meshram, and Jan Hesselbarth. "Four Elements Reconfigurable MIMO Antenna for Dual Band Applications." International Journal of Advances in Microwave Technology 07, no. 01 (2022): 274–82. http://dx.doi.org/10.32452/ijamt.2022.274282.

Full text
Abstract:
Four-element reconfigurable multiple-input-multiple-output (MIMO) antennas for dual band applications are proposed. The frequency reconfigurability of the proposed antennas is achieved by incorporation of three PIN diodes within the single element. The antenna covers multiple switchable operating bands for Worldwide Interoperability for Microwave Access (Wi-MAX)/Wireless Local Area Network (WLAN) applications (3.4-3.6GHz, 3.8-3.86GHz, 5.18-5.27GHz, 5.35-5.5GHz and 5.67-5.8GHz). The proposed MIMO antenna consists of 2x2 elements on a single FR4 substrate.The combinations of MIMO and reconfigurable antenna provide improved performance in terms of envelope correlation coefficient (ECC) and channel capacity loss (CCL) in multiple-frequency bands. The MIMO antenna system performance including the isolation, ECC, CCL, and the diversity gain (DG) are simulated and measured. High isolation (≥ 25dB) is achieved between reconfigurable MIMO antenna ports without any internal and external decoupling network. The proposed antenna has sufficient performance that makes it suitable for indoor access points (IAPs).
APA, Harvard, Vancouver, ISO, and other styles
4

Syed, Avez, Nebras Sobahi, Muntasir Sheikh, Raj Mittra, and Hatem Rmili. "Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection." Applied Sciences 12, no. 1 (December 24, 2021): 147. http://dx.doi.org/10.3390/app12010147.

Full text
Abstract:
In this paper, an effective system for microwave imaging of breast tumor detection using modified 16-planar log periodic antenna (PLPA) array is presented. The modified PLPA operates in the band from 2 to 5 GHz with stable directional patterns in the end-fire direction. Once the results of a single antenna element have been validated, the design is extended to include 16 antenna elements. All 16 transceiver antennas are vertically placed around the phantom in a circular manner where one antenna acts as a transmitter and the rest work as receivers. Delay and Sum (DAS) algorithm is used for post processing the acquired scattered signals from the sensors to reconstruct the image of the breast and to identify the existence of breast tumors. The electromagnetic simulators CST and HFSS are used to design the system, while MATLAB is used to process the data. The developed PLPA array-based microwave imaging system performs admirably, making it one of the most effective systems for detecting tumor cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Gas, Piotr. "Multi–Frequency Analysis For Interstitial Microwave Hyperthermia Using Multi–Slot Coaxial Antenna." Journal of Electrical Engineering 66, no. 1 (January 1, 2015): 26–33. http://dx.doi.org/10.1515/jee-2015-0004.

Full text
Abstract:
Abstract The presented paper shows a new concept of multi-slot coaxial antenna working at different frequencies to predict the best solution for interstitial microwave hyperthermia treatment. The described method concerns a microwave heating of unhealthy cells using a thin microwave antenna located in the human tissue. Therefore, the coupled wave equation in a sinusoidal steady-state and the transient bioheat equation under an axial symmetrical model are considered. The 4-Cole-Cole approximation has been used to compute the complex relative permittivity of the human tissues at different antenna operating frequencies. At the stage of numerical simulation the finite element method (FEM) is used. Special attention has been paid to estimate the optimal antenna parameters for thermal therapy for three microwave frequencies mainly used in medical practice and make comparison of the obtained results in the case of single-, double- and triple-slot antennas.
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Chunfeng, Liyu Xie, Kangqian Xu, Songtao Xue, Can Jiang, Guochun Wan, and Tao Ding. "Transverse deformation effect on sensitivity of strain-sensing patch antenna." International Journal of Distributed Sensor Networks 16, no. 3 (February 29, 2020): 155014772090819. http://dx.doi.org/10.1177/1550147720908192.

Full text
Abstract:
The strain sensor based on microwave patch antenna is proposed to monitor structural strain in structural health monitoring. When patch antenna experiences deformation, the resonant frequency of patch antenna will shift. With these characteristics, the patch antenna can operate as both the strain-sensing element and communication component. This article chooses an RT-5880 rectangular patch antenna for strain measurement, focusing on its sensing performance. For distinguishing the influence of deformation in the antenna’s length direction and width direction, the numerical simulation is implemented, and then two kinds of laboratory experiments are conducted. The first approach is to paste antennas in longitudinal and transverse ways and solve the equation set. The other approach is to design another patch antenna with narrow width and compare the test results with the wide one. All results show that the influence of deformation in wide direction on sensitivity can be neglected, and the resonant frequency shift has a good linear relationship with the strain of antenna in length direction.
APA, Harvard, Vancouver, ISO, and other styles
7

Tiwari, Rovin, Raghavendra Sharma, and Rahul Dubey. "Microstrip Patch Antenna Array Design Anaylsis for 5G Communication Applications." SMART MOVES JOURNAL IJOSCIENCE 6, no. 5 (May 22, 2020): 1–5. http://dx.doi.org/10.24113/ijoscience.v6i5.287.

Full text
Abstract:
A research on Antenna design and simulation is a emerging area among researchers. Antenna is a basic element for wireless communication. There are various shaps and types of antenna, which uses in different allpication. Now a days Microstrip patch anteena is very useful in advance electronics devices applications. This paper focused on study based various types of microstrip antenna. Return loss, VSWR, bandwidth, resonant frequency and gain is key parameters to judge antenna performance. Good value of return loss is less than -10dB. Considerable range of VSWR is 1-2. CST microwave studio is a advance software to design and simulation of all types of antenna, filter etc.
APA, Harvard, Vancouver, ISO, and other styles
8

Vollbracht, D. "Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications." Advances in Radio Science 13 (November 3, 2015): 251–68. http://dx.doi.org/10.5194/ars-13-251-2015.

Full text
Abstract:
Abstract. The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation patterns.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hangyu, Jingcheng Zhao, Tao Hong, Shuli Zheng, Haohui Hong, and Mohamed Cheriet. "A measurement method of fifth-generation multiple-input multiple-output antenna based on microwave imaging." International Journal of Distributed Sensor Networks 16, no. 6 (June 2020): 155014772093714. http://dx.doi.org/10.1177/1550147720937148.

Full text
Abstract:
An increase in the quantity and density of antenna elements increases the mismatched failure rate and measurement difficulty of the multiple-input multiple-output. To simplify the measurement method of the S11 parameter utilizing the traditional vector network analyzer, this article proposes a multiple-input multiple-output measurement method based on microwave imaging. The multiple-input multiple-output element was designed, and then the existence of mismatched scattering of the mismatched state through microwave one-dimensional and two-dimensional imaging simulations was verified. A wideband Vivaldi antenna was designed for measurement imaging verification. The research results show that the proposed method is capable of detecting the mismatched scattering of mismatched elements as well as accurately locating the mismatched elements and mismatched position of circuits behind the element, which improves the measurement efficiency.
APA, Harvard, Vancouver, ISO, and other styles
10

Goyal, Ravi Kumar, and Uma Shankar Modani. "The Four-Element MIMO Antenna Design with Low Mutual Coupling at 28 GHz for 5G Networks." International Journal of Engineering and Advanced Technology 11, no. 4 (April 30, 2022): 45–48. http://dx.doi.org/10.35940/ijeat.d3457.0411422.

Full text
Abstract:
in this contribution, a MIMO micro strip patch antenna with four radiating elements is designed3 at 28 GHz. The designed antenna has a very low isolation loss between radiating antenna elements. The MIMO antenna is simulated using the CST Microwave simulator. The measurement results are also shown in this paper. Both simulation and measurement results are studied to analyze the performance of the antenna. The MIMO patch antenna features such as, return loss, VSWR, gain, beam-width and radiation pattern are analyzed at a center frequency of 28 GHz. The isolation loss between the MIMO antenna elements is investigated experimentally with inter-element spacing of 3 mm. The envelope correlation coefficients among the elements, the mean effective gains, the efficiencies are also discussed. The designed antenna is planner, compact and thin so it is applicable for 5G handset.
APA, Harvard, Vancouver, ISO, and other styles
11

Singh, Vivek, Brijesh Mishra, and Rajeev Singh. "Anchor shape gap coupled patch antenna for WiMAX and WLAN applications." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, no. 1 (January 7, 2019): 263–86. http://dx.doi.org/10.1108/compel-12-2017-0546.

Full text
Abstract:
Purpose Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide interoperability for microwave access applications. Design/methodology/approach An anchor shape microstrip antenna is conceived, designed, simulated and measured. The anchor shape antenna is transformed to its rectangular equivalent by conserving the patch area. Modeling and simulation of the antenna is performed by Ansys high frequency structure simulator (HFSS) electromagnetic solver based on the concept of finite element method. The simulated results are experimentally verified by using Agilent E5071C vector network analyzer. Theoretical analysis of an electromagnetically gap coupled anchor shape microstrip patch antenna has been performed by obtaining the lumped element equivalent of the transformed antenna. Findings The proposed antenna has a compact conducting patch of dimension 0.26λ × 0.12λ mm2 (λ is calculated at lower resonating frequency of 3.56 GHz) with impedance bandwidths of 100 and 140 MHz and antenna gains of 1.91 and 3.04 dB at lower resonating frequency of 3.56 GHz and upper resonating frequency of 5.4 GHz, with omni-directional radiation pattern. Originality/value In literature, one does not encounter anchor shape antenna using the concept of gap coupling and parasitic patches. The design has been optimized for wireless local area network/worldwide interoperability for microwave access applications with a relatively low patch area (291.12 mm2) as compared to other reported antennas for wireless local area network/worldwide interoperability for microwave access applications. Transformed antenna and the actual experimental antenna behavior varies, but the resonant frequencies of the transformed antenna as observed by theoretical analysis and simulated results (by high frequency structure simulator) are reasonably close, and the percentage difference between the resonant frequencies (both at lower and upper bands) is within the permissible limit of 1-2.5 per cent. Results confirm the theoretical proposition of transformation of shapes in antenna design, which allows a designer to adapt the design shape according to the application.
APA, Harvard, Vancouver, ISO, and other styles
12

Montiel, Óscar I., Mario A. Ayala, and Lácides Ripoll S. "Design and simulation of a non-resonant antenna: waveguide slot antenna for 30 GHz." Visión electrónica 10, no. 1 (June 20, 2016): 49–56. http://dx.doi.org/10.14483/22484728.11611.

Full text
Abstract:
The main contribution of this article is the design and simulation of a non-resonant slot antenna based on wave guides to operate in the range of microwaves. The design is done using MATLAB and the Chebyshev synthesis to determine the distribution of current in each element. Based on this information, the size and distribution of the elements are calculated. Different design conditions are simulated, such as: changes in the level from main lobe to secondary and dierent number of slots at one frequency. The slots are interleaved with respect to the axis of the waveguide and separated by a distance (d). To determine its dimensions, it is necessary to deduce the conductances of the array. A particular design case is compared with simulations from the software CST Microwave Studio. It is observed that radiation diagrams are very similar in both number and amplitude of the lobes, validating the tool used.
APA, Harvard, Vancouver, ISO, and other styles
13

Naghar, Jalal, Otman Aghzout, and Azzeddin Naghar. "Design Study of a Miniaturized Multi-layered Antenna-in-package for 2.4 GHZ Wireless Communication." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 5 (October 1, 2018): 3627. http://dx.doi.org/10.11591/ijece.v8i5.pp3627-3635.

Full text
Abstract:
This paper proposes a novel miniaturization technique to enhance the radiation properties of small multi-layer patch antenna used in packaged circuits. The multilayered antenna design is composed of three layers with different shapes. An enhancement on the radiation properties has been obtained by optimizing the geometry of the radiated element and the parasitic conductor of the middle layer. The whole design has been implemented on the FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm and Copper thickness of 5 μm. The first layer is a driven element while second and the third layer are parasitic patch elements. The optimized multilayer antenna has a very small size of 12×6×5 mm^3. Considering the small size of the antenna, a detailed study of the parameter affecting the radiation has been considered to force the antenna to operate at 2.4 GHz band. Miniaturization techniques based on the current distribution have been also taken into account to shift down the resonant frequency and reduces more and more the antenna size at the designed operating frequency. The miniaturized antenna maintains performant radiation characteristics in terms of reflexion coefficient, bandwidth and directivity. All developed antennas are simulated using the commercial Electromagnetic CST Microwave Studio software. Achieved results demonstrate a good performance with low cost and compact size.
APA, Harvard, Vancouver, ISO, and other styles
14

Matsumuro, Takayuki, Yohei Ishikawa, Tomohiko Mitani, Naoki Shinohara, Masashi Yanagase, and Mayumi Matsunaga. "Study of a single-frequency retrodirective system with a beam pilot signal using dual-mode dielectric resonator antenna elements." Wireless Power Transfer 4, no. 2 (May 16, 2017): 132–45. http://dx.doi.org/10.1017/wpt.2017.4.

Full text
Abstract:
A terrestrial microwave power transmission system is considered as an effective method for collecting natural energy. In this system, frequency dependence of the refractive index and multipath propagation due to the ground surface poses problems. In the study, a single-frequency retrodirective system was proposed with a beam pilot signal using dual-mode dielectric resonator antenna elements. The results confirmed that the beam pilot signal radiated from the entire surface of the receiving antenna and accurately used the same propagation space as that of microwave power by beam propagation method simulation. A dual-mode dielectric resonator antenna was proposed as a common array antenna element for the beam pilot signal and microwave power. This involves a cross-shaped hemispherical dielectric resonator structure, and an isolation level exceeding 60 dB was experimentally measured between the orthogonal ports of the fabricated antenna. The dual-mode dielectric resonator antenna with an isolation exceeding 60 dB was successfully developed as an enabling device to realize a single-frequency retrodirective system with a beam pilot signal.
APA, Harvard, Vancouver, ISO, and other styles
15

Nan, Qun, Xue Mei Guo, and Fei Zhai. "The Contrast of Two Kinds of Microwave Antenna SAR Simulation." Applied Mechanics and Materials 553 (May 2014): 379–83. http://dx.doi.org/10.4028/www.scientific.net/amm.553.379.

Full text
Abstract:
Abst r a c t. Specific Absorption Rate (SAR) represents the electromagnetic radiation sorption ability of the biological organisms. It is a hotspot issue in thermal ablation. Different antenna structure can get the different SAR in clinical treatment. This study use simulation software HFSS which based on finite element method simulate the SAR of two microwave antenna (ETW antenna and Cap-Choke microwave antenna). Obtain the curves of SAR distribution, predict the temperature field more accuracy and provide method to design microwave antenna. The ratio of the long axis and short axis of Cap-Choke antenna is about 3:2, while the ratio of ETW antenna is 4.7:1.7. So Cap-Choke antenna is suitable for the ablation of tumor, while ETW antenna can meet to the requirement of linear ablation area in atrial fibrillation ablation therapy.
APA, Harvard, Vancouver, ISO, and other styles
16

Ortega-Palacios, Rocío, Citlalli Jessica Trujillo-Romero, Mario Francisco Jesús Cepeda-Rubio, Lorenzo Leija, and Arturo Vera Hernández. "Heat Transfer Study in Breast Tumor Phantom during Microwave Ablation: Modeling and Experimental Results for Three Different Antennas." Electronics 9, no. 3 (March 24, 2020): 535. http://dx.doi.org/10.3390/electronics9030535.

Full text
Abstract:
It is worldwide known that the most common type of cancer among women is breast cancer. Traditional procedures involve surgery, chemotherapy and radiation therapy; however, these treatments are invasive and have serious side effects. For this reason, minimally invasive thermal treatments like microwave ablation are being considered. In this study, thermal behavior of three types of slot-coaxial antennas for breast cancer microwave ablation is presented. By using finite element method (FEM), all antennas were modeled to estimate the heat transfer in breast tumor tissue surrounded by healthy breast tissue. Experimentation was carried out by using the antennas inserted inside sphere-shaped-tumor phantoms with two different diameters, 1.0 and 1.5 cm. A microwave radiation system was used to apply microwave energy to each designed antenna, which were located into the phantom. A non-interfering thermometry system was used to measure the temperature increase during the experimentation. Temperature increases, recorded by the thermal sensors placed inside the tumor phantom surrounded by healthy breast phantom, were used to validate the FEM models. The results conclude that, in all the cases, after 240 s, the three types of coaxial slot antenna reached the temperature needed produce hyperthermia of the tumor volume considered in this paper.
APA, Harvard, Vancouver, ISO, and other styles
17

Hazdra, Pavel, Jan Kracek, Tomas Lonsky, Vaclav Kabourek, and Zdenek Hradecky. "Shared-Aperture 24–28 GHz Waveguide Antenna Array." Electronics 10, no. 23 (November 29, 2021): 2976. http://dx.doi.org/10.3390/electronics10232976.

Full text
Abstract:
A compact three-element shared-aperture waveguide antenna array for the 24–28 GHz microwave-frequency band is presented as a proof-of-concept of an array with steerable directional beam suitable for 5G telecommunication systems. The array is intended for use in a microwave photonic link and is sufficiently steerable only with the progressively phased excitation signals of equal magnitudes. The mutual interactions between the array elements are minimized to maintain the properties of the individual elements, even if they are embedded and closely spaced in the array. The proposed concept could be simply extended by adding more elements to further increase the directivity and enhance the steering properties of the array.
APA, Harvard, Vancouver, ISO, and other styles
18

Darsono, Muhammad, Ahmad Ruri Wijaya, and Rommy Hartono. "Modeling and Simulation of Dual-band Yagi Antennas for Voice Communication on Microsatellite." JURNAL INFOTEL 11, no. 3 (September 30, 2019): 68–72. http://dx.doi.org/10.20895/infotel.v11i3.435.

Full text
Abstract:
The design of the dual-band Yagi antenna was developed to support voice communication through voice repeaters on microsatellites in the UHF-VHV frequency from ground stations. The Yagi antenna is a type of half lambda dipole antenna that makes it easy to obtain direction and increase gain. The antenna is designed using the method of moment through a simulation with the CST microwave studio software application. The design used as an antenna element material is a type of copper pipe cylinder. The results of the Yagi antenna design in the VHF frequency consist of one driven element, one reflector element, and three director elements, while the UHF frequency consists of one reflector element and seven directors. The results of simulation parameters are obtained, such as Bandwidth of return loss below 10 dB is 4.3 MHz(VHF), and 44 MHz (UHF), VSWR (2:1) is 1.24 (VHF) and 1.36 (UHF), Gain is 9.19 dBi (VHF) and 10.5 dBi (UHF) and Beam Width is 64 degree (VHF) and 58 degree (UHF). The suitability of the antenna design target is dual-band, and Gain value in UHF is higher than VHF.
APA, Harvard, Vancouver, ISO, and other styles
19

Hamza, Aven Rawf, and Asaad M. Jassim Al-Hindawi. "The Effecting of Human Body on Slotted Monopole Antenna in Wearable Communications." Journal of Engineering 27, no. 2 (February 1, 2021): 27–43. http://dx.doi.org/10.31026/j.eng.2021.02.03.

Full text
Abstract:
In this paper, the characteristics of microstrip monopole antennas are studied firstly in free space. Secondly, the effects of the human body on the studied antenna's performance are investigated for wearable communications. Different patch shapes of microstrip monopole antenna are chosen to operate at two bands: industrial scientific and medical band (ISM) and ultra-wideband (UWB) for wearable applications. The studied antenna consists of a radiating element on one side of the substrate and a partial ground plane on the other side. The antenna is supposed to fabricate on cloth fabric whose relative dielectric constant is Ɛr =1.7. At the same time, the pure copper could be used as the conducting part representing both the radiating monopole and the partial ground plane. The software program of Computer Simulation Technology (CST) for Microwave Studio (MWS) is utilized to simulate the studied antennas. The obtained results have illustrated that in the free space, the proposed antennas of slotted hexagonal, rectangular, and circular shapes can operate from 2-12 GHz and of the bandwidth of 10.31 GHz, 10.19 GHz, and 9.67 GHz, respectively. The hexagonal antenna is selected and proposed to investigate the effects of the human body on its performance. The human body is simulated, and its effects on the performance of the proposed antenna are studied. The reflection coefficient, Voltage Standing Wave Ratio (VSWR), gain, and efficiency are found over that frequency range. The simulated results indicate that the human body effects are significant, and the proposed antenna showed to be a good candidate for wearable communications.
APA, Harvard, Vancouver, ISO, and other styles
20

Elajoumi, S., A. Tajmouati, A. Errkik, Am Sanchez, and M. Latrach. "Microstrip Rectangular Monopole Antennas with Defected Ground for UWB Applications." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 4 (August 1, 2017): 2027. http://dx.doi.org/10.11591/ijece.v7i4.pp2027-2035.

Full text
Abstract:
This paper presents the design of new compact antennas for ultra wide band applications. Each antenna consists of a rectangular patch fed by 50Ω microstrip transmission line and the ground element is a defected ground structure (DGS). The aim of this study is to improve the bandwidth of these antennas by using DGS and the modification geometry of rectangular structure, which gives new compact antennas for UWB applications. The input impedance bandwidth of the antennas with S11<-10dB is more than 10GHz, from 3GHz to more than 14 GHz. The proposed antennas are investigated and optimized by using CST microwave studio, they are validated by using another electromagnetic solver Ansoft HFSS. The measured parameters present good agreement with simulation. The final antenna structures offer excellent performances for UWB system.
APA, Harvard, Vancouver, ISO, and other styles
21

Ndip, Ivan, Abdurrahman Öz, Christian Tschoban, Stefan Schmitz, Martin Schneider-Ramelow, Stephan Guttowski, Herbert Reichl, and Klaus-Dieter Lang. "Impact of Process Tolerances on the Performance of Bond Wire Antennas at RF/Microwave Frequencies." International Symposium on Microelectronics 2011, no. 1 (January 1, 2011): 000914–20. http://dx.doi.org/10.4071/isom-2011-tha1-paper7.

Full text
Abstract:
Due to the multitude of advantages bond wire antennas have over conventional planar antennas (especially on-chip planar antennas), they have received much research attention within the last four years. The focus of the contributions made so far has been on exploiting different configurations of single-element and array bond wire antennas for short-range applications at RF/microwave frequencies. However, the effects of process tolerances of bond wires on the radiation characteristics of bond wire antennas have not been studied in published literature. Therefore in this paper, we investigate the impact of up to 20% fluctuations in the parameters of bond wires on the performance of 42 GHz and 60 GHz bond wire antennas. Our results reveal that the length and radius of bond wires are the most and least sensitive parameters, respectively. Furthermore, the severity of the impact of process tolerances depends on the impedance bandwidth of the original antenna, before considering the tolerances. For example, a 10% change in the length of a bond wire causes the resonance frequency of a 42 GHz antenna to be shifted out of the specified 3GHz bandwidth (40.5 GHz–43.5 GHz) required for point-to-point communication. However, although a 10% change in length of a bond wire yields a 2.5 GHz shift in the resonance frequency of a 60 GHz bond wire antenna, it doesn’t completely detune the antenna because of the original 6 GHz bandwidth available, prior to the fluctuation. Therefore, to prevent the impact of process tolerances from severely degrading the performance bond wire antennas, these antennas should be designed to have larger bandwidths than specified. For experimental verification, a bond wire antenna was designed, fabricated and measured. Very good correlation was obtained between measurement and simulation.
APA, Harvard, Vancouver, ISO, and other styles
22

Ranjan, Pinku, and Ravi Kumar Gangwar. "Segmented quarter cylindrical dielectric resonator antenna: simulation and experimental investigation in composite form for wideband applications." International Journal of Microwave and Wireless Technologies 9, no. 4 (June 6, 2016): 881–90. http://dx.doi.org/10.1017/s1759078716000714.

Full text
Abstract:
A probe feed wideband multi-element dual segments quarter cylindrical dielectric resonator antenna (q-CDRA) in composite forms have been proposed. The q-CDRA has been introduced by splitting CDRA into four uniform quarters and multi-segmentation approach has been castoff for further improvement in bandwidth of q-CDRA. The dual segments q-CDRA has been designed and analyzed using theoretical analysis and Ansoft HFSS simulation software. Further the dual segment multi-element q-CDRAs in composite form have been designed. A coaxial probe has been placed at the center of the ground plane for the excitation of proposed multi-element and multi-segmented composite form of q-CDRA, which excite TM01δ mode in the proposed antenna. The input characteristics and radiation patterns of the proposed composite antennas have been studied and their results are compared with corresponding experimental results. Prototype of single, two, and four elements dual-segment composite q-CDRAs have been fabricated and input characteristics of the proposed composite antennas have been compared with each other. Four elements dual-segment composite q-CDRA has shown wide impedance bandwidth (|S11| ≤ −10 dB) of 85.13% with monopole-like radiation pattern. The peak gain of 4.85 dBi with 98.5% radiation efficiency has been achieved for dual-segment four elements composite q-CDRA. The proposed multi-element dual-segment composite q-CDRAs may find suitable applications in C and X-band with complete covering of the 5.0 GHZ wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) band.
APA, Harvard, Vancouver, ISO, and other styles
23

Ishikawa, Takaki, and Naoki Shinohara. "Flat-topped beam forming experiment for microwave power transfer system to a vehicle roof." Wireless Power Transfer 2, no. 1 (March 2015): 15–21. http://dx.doi.org/10.1017/wpt.2015.5.

Full text
Abstract:
We proposed and examined a microwave power transfer system for electric vehicles (EVs). In this system, electricity is transmitted from a transmitting antenna over an EV to a receiving antenna on the roof of the EV. We used a rectenna to convert the received microwave power to direct current power. The conversion efficiency of a rectenna array is affected by the input power level distribution, and we have to form a flat-topped beam pattern to increase the conversion efficiency. We conducted an experiment to form a flat-topped beam pattern by using a phased array antenna. In this experiment, the output power of each antenna element is uniform and cannot be controlled independently. Hence, we controlled only the output phases of each antenna element and formed a flat-topped beam pattern. The distance between the transmitting antenna and the receiving area is 6.45 m, and the receiving area corresponds to a space in which the azimuth and elevation are in the range of −5°–5°.
APA, Harvard, Vancouver, ISO, and other styles
24

Saidulu, V. "Design a 900 Hybrid Feed Square Patch Stacked Antenna at 3GHz." International Journal of Engineering and Advanced Technology 10, no. 3 (February 28, 2021): 201–5. http://dx.doi.org/10.35940/ijeat.c2279.0210321.

Full text
Abstract:
Microstrip antennas find wide applications in high-speed vehicles, and missiles, tanks, satellite communications etc. The main advantage of these antennas over conventional microwave antenna are lightweight, low volume, low cost, planar structure and compatibility with integrated circuits. The present paper deals with the design and development of 90o hybrid feed square patch stacked antenna. The design of square patch and 900 hybrid feed has been carried out at frequency of 3 GHz on epoxy glass substrate, the radiation pattern of the square patch has been experimentally studied. The effect of stacked patches placed above the square patch has been studied experimentally for different cases like 1,2,3 and 4 stacked patches placed one above other above the driven square patch. From the experimental result it has been found that performance of the case of 1 + 2 (one driven element and two parasitic element) is optimum with bandwidth of 16 % and VSWR 1.42 the performance degrades the no of practical elements is increased that is for case 1 + 3 and 1 + 4 etc., The performance of 1 + 2 case of also found to be superior to the performance 1+ 0 and 1+1 cases experimentally studied, also been carried out for cross Polarization and co – polarization.
APA, Harvard, Vancouver, ISO, and other styles
25

Sateaa, Shahad Dhari, Maysam Sameer Hussein, Zainab Ghazi Faisal, Amany Mohammad Abood, and Huda Dhari Satea. "Design and simulation of dual-band rectangular microstrip patch array antenna for millimeter-wave." Bulletin of Electrical Engineering and Informatics 11, no. 1 (February 1, 2022): 299–309. http://dx.doi.org/10.11591/eei.v11i1.3336.

Full text
Abstract:
Microstrip array antennas are essentially for radar and communications systems. They are used to get a needed pattern that cannot be realized with a single element. This paper aims to design and simulate of rectangular microstrip patch array antenna 1 patch (1×1), 2 patches (1×2), and 4 patches (1×4) and improve the performance results. The proposed antenna is simulated by using electromagnetic simulation, computer software technology Microwave studio (CST) printed on Rogers RT5880 (lossy) substrate with dielectric constant 2.2, 0.0009 loss tangent, and thickness 0.1 mm. The simulation results show that the small patch antenna size (1.57 mm × 2 mm) for three designs works at dual bandwidth. The major target of this work is to accomplish an unusual directivity with improved gain for three antenna array designs.
APA, Harvard, Vancouver, ISO, and other styles
26

Vettikalladi, Hamsakutty, Muhammad Kamran Saleem, and Majeed A. S. Alkanhal. "Membrane antenna array based on substrate integrated waveguide technology for 94 GHz communication systems." International Journal of Microwave and Wireless Technologies 8, no. 3 (March 10, 2015): 633–41. http://dx.doi.org/10.1017/s1759078715000240.

Full text
Abstract:
The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.
APA, Harvard, Vancouver, ISO, and other styles
27

Palanisamy, Satheeshkumar, Balakumaran Thangaraju, Osamah Ibrahim Khalaf, Youseef Alotaibi, Saleh Alghamdi, and Fawaz Alassery. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication." Energies 14, no. 19 (September 28, 2021): 6204. http://dx.doi.org/10.3390/en14196204.

Full text
Abstract:
The study and exploration of massive multiple-input multiple-output (MMIMO) and millimeter-wave wireless access technology has been spurred by a shortage of bandwidth in the wireless communication sector. Massive MIMO, which combines antennas at the transmitter and receiver, is a key enabler technology for next-generation networks to enable exceptional spectrum and energy efficiency with simple processing techniques. For massive MIMOs, the lower band microwave or millimeter-wave band and the antenna are impeccably combined with RF transceivers. As a result, the 5G wireless communication antenna differs from traditional antennas in many ways. A new concept of the MIMO tri-band hexagonal antenna array is being introduced for next-generation cellular networks. With a total scaling dimension of 150 × 75 mm2, the structure consists of multiple hexagonal fractal antenna components at different corners of the patch. The radiating patch resonates at 2.55–2.75, 3.45–3.7, and 5.65–6.05 GHz (FR1 band) for better return loss (S11) of more than 15 dB in all three operating bands. The coplanar waveguide (CPW) feeding technique and defective ground structure in the ground plane have been employed for effective impedance matching. The deviation of the main lobe of the radiation pattern is achieved using a two-element microstrip Taylor antenna array with series feeding, which also boosts the antenna array’s bandwidth and minimizes sidelobe. The proposed antenna is designed, simulated, and tested in far-field radiating conditions and generates tri-band S-parameters with sufficient separation and high-quality double-polarized radiation. The fabrication and testing of MIMO antennas were completed, where the measurement results matched the simulation results. In addition, the 5G smartphone antenna system requires a new, lightweight phased microwave antenna (μ-wave) with wide bandwidth and a fire extender. Because of its decent performance and compact architectures, the proposed smartphone antenna array architecture is a better entrant for upcoming 5G cellular implementations.
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Li, Lv, Chen, and Ni. "Impact of Element Pattern on the Performance of GNSS Power-Inversion Adaptive Arrays." Electronics 8, no. 10 (October 4, 2019): 1120. http://dx.doi.org/10.3390/electronics8101120.

Full text
Abstract:
Power-inversion (PI) adaptive arrays are widely used in Global Navigation Satellite System (GNSS) receivers for interference mitigation. The effects of element patterns on the performance of PI adaptive arrays are investigated in this paper. To this end, the performance of adaptive arrays is investigated by Monte Carlo simulations, using CST Microwave Studio (Dassault Systems, Vélizy-Villacoublay, France) to calculate the radiation patterns of circular microstrip elements which are used to compute the adaptive weight and the adaptive array gain. It is shown that the performance of PI adaptive arrays is mainly dependent on the gain pattern of the reference antenna element rather than the non-reference elements because the algorithm essentially pushes the elements into an unequal position. Furthermore, the results show that the impact of mutual coupling on the performance of the antenna array can be associated with the radiation patterns of the reference element, which is helpful in selecting the optimum reference element without increasing computational complexity, especially for small GNSS arrays.
APA, Harvard, Vancouver, ISO, and other styles
29

Gangwar, Ravi Kumar, Pinku Ranjan, and Abhishek Aigal. "Four element triangular dielectric resonator antenna for wireless application." International Journal of Microwave and Wireless Technologies 9, no. 1 (May 20, 2015): 113–19. http://dx.doi.org/10.1017/s1759078715000860.

Full text
Abstract:
A wideband four element triangular dielectric resonator antenna (TDRA) has been designed and fabricated by using 50 Ω coaxial probe feed. The input and radiation characteristics of the proposed antenna have been extracted through Ansoft HFSS and CST Microwave Studio simulation software and compared with the experimental results. The simulated results have been in good agreement with the experimental results. The proposed antenna characteristics have also been compared with the same dimensions of the single element TDRA, and found enhancement in bandwidth with lower resonant frequency. Its performance has also been compared with same area (equal to proposed antenna) of single element TDRA. The proposed antenna provides nearly 37% bandwidth (|S11| < −10 dB) at a resonant frequency of 5.45 GHz with 4.76 dBi peak gain. The symmetry and uniformity in the radiation patterns is obtained consistently for the entire operating bandwidth. The proposed antenna shows consistently symmetric monopole type radiation pattern with low cross polarization for WLAN (IEEE 802.16) and WiMAX applications. The performance of the proposed antenna has been compared with some similar type of dielectric resonator antenna (DRA) shapes and it has been observed that TDRA is taking very less radiation area for giving better performance than other DRA shapes.
APA, Harvard, Vancouver, ISO, and other styles
30

Abdul Aziz, Muhammad Afiq, Norhudah Seman, and Tien Han Chua. "Microstrip antenna design with partial ground at frequencies above 20 GHz for 5G telecommunication systems." Indonesian Journal of Electrical Engineering and Computer Science 15, no. 3 (September 1, 2019): 1466. http://dx.doi.org/10.11591/ijeecs.v15.i3.pp1466-1473.

Full text
Abstract:
This article presents the design of a microstrip patch antenna at different frequencies above 20 GHz that intended to be used for fifth generation (5G) telecommunication system. The design of microstrip patch antenna that has a radiating element with a rectangular shape and partial ground plane is proposed. The patch antenna is designed using a Rogers RT5880 substrate with dielectric constant, <em>ε<sub>r</sub></em> of 2.2. The results of the designed antenna design analyzed in terms of the reflection coefficient, bandwidth, gain, and directivity performance. The proposed patch antennas at design frequencies of 25.875 GHz, 38.75 GHz, 43 GHz, 46.25 GHz, 48.7 GHz, 51.5 GHz, 71 GHz, and 83.5 GHz have a fractional bandwidth, gain and directivity that respectively greater than 10.2 %, 2.159 dB and 2.562 dBi. All designs and analysis are performed by using the CST Microwave Studio software.
APA, Harvard, Vancouver, ISO, and other styles
31

Run-Nan, Cai, Yang Ming-Chuan, Lin Shu, Zhang Xing-Qi, Zhang Xin-Yue, and Liu Xiao-Feng. "Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications." International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/651789.

Full text
Abstract:
A printed director antenna with compact structure is proposed. The antenna is fed by a balanced microstrip-slotline and makes good use of space to reduce feeding network area and the size of antenna. According to the simulation results of CST MICROWAVE STUDIO software, broadband characteristics and directional radiation properties of the antenna are explained. The operating bandwidth is 1.8 GHz–3.5 GHz with reflection coefficient less than −10 dB. Antenna gain in band can achieve 4.5–6.8 dBi, and the overall size of antenna is smaller than0.34λ0×0.58λ0. Then the antenna is developed to a two-element antenna array, working frequency and relative bandwidth of which are 2.15–2.87 GHz and 28.7%, respectively. Compared with antenna unit, the gain of the antenna array has increased by 2 dB. Thus the proposed antenna has characteristics of compact structure, relatively small size, and wideband, and it can be widely used in PCS/UMTS/WLAN/ WiMAX fields.
APA, Harvard, Vancouver, ISO, and other styles
32

Arun, Henridass, and Gulam Nabi Alsath M. "CPW fed circularly polarized wideband pie-shaped monopole antenna for multi-antenna techniques." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no. 6 (November 5, 2018): 2109–21. http://dx.doi.org/10.1108/compel-12-2017-0515.

Full text
Abstract:
Purpose This paper aims to present the design and implementation of a circularly polarized co-planar waveguide (CPW) fed wideband pie-shaped monopole antenna for multi-antenna techniques. Multi-antenna techniques are promising solutions for higher data rate and enhanced reliability of wireless applications. They find numerous applications in 4G/5G networks and in most wireless standards such as wireless local area networks (WLAN), wireless fidelity and worldwide interoperability for microwave access systems to enhance the channel capacity without additional spectrum by means of multi-path propagation techniques. Design/methodology/approach The antenna is designed to operate at three WLAN frequency bands of 4.8, 5.2 and 5.8 GHz. The measured 10 dB impedance bandwidth of the proposed antenna element is 1.2 GHz (24.23 per cent). The proposed CPW fed, pie-shaped monopole antenna has a gain of 5.4 dB and an efficiency of 72.8 per cent at 4.8 GHz. Findings To use the proposed antenna in a multi-antenna environment, the antennas have to be placed in a close proximity to each other. The close proximity introduces strong mutual coupling between the antennas, which in turn degrades the performance of multi-antenna systems. A multi-antenna system with two antenna elements has been constructed with an edge to edge spacing of 0.24 λ0 (15 mm), and the mutual coupling level is −17 dB. To enhance the isolation between the antenna elements, a shorting pin-based interconnected semicircles enclosed decoupling structure is proposed, which improves the isolation by a factor of 12.67 dB at 4.8 GHz. Originality/value To validate the performance of the proposed multi-antenna in working environment, the performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG) and total active reflection coefficient (TARC) are computed for the proposed multiple-input multiple-output (MIMO) antenna. The ECC value is 0.000366 at center frequency and below 0.09 for the entire operating bandwidth, which is well below the acceptable level of 0.5 as per 3GPP standard. The DG value lies above 9.5 dB for the entire operating bandwidths and it is well above the minimum value of 3 dB. The TARC values are calculated based on S parameters, and it proves that the proposed antenna a good candidate for the multi-antenna systems.
APA, Harvard, Vancouver, ISO, and other styles
33

Tesarik, Jan, Tomas Pokorny, and Jan Vrba. "Dielectric sensitivity of different antennas types for microwave-based head imaging: numerical study and experimental verification." International Journal of Microwave and Wireless Technologies 12, no. 10 (July 16, 2020): 982–95. http://dx.doi.org/10.1017/s1759078720000835.

Full text
Abstract:
AbstractThe design of proper antenna element (AE) for microwave-based head imaging or brain stroke detection is a crucial challenge in the development process of microwave imaging (MWI) systems. The main purpose of this paper was to design, fabricate, and experimentally verify the compact and dimensions-reduced H-slot antenna suitable for the new generation of multichannel MWI system for brain stroke detection. The slot antenna type was chosen based on the numerical study of three AEs available in the literature, i.e. bow tie, slot, and waveguide-based. The study was focused on the sensitivity of the antennae (change of magnitude and phase of S21) due to dielectric parameters change or type and diameter of inclusion in a head phantom representing a hemorrhagic (HEM) or ischemic (ISCH) stroke phantom, respectively. Further, the analysis of antenna radiation to lossy medium/air and its immunity against plane wave exposure was carried out. The H-slot antenna was fabricated and experimentally verified (measurements of reflection as well as transmission coefficients) using a liquid head phantom with inserted HEM stroke phantom (both prepared as a mixture of propylene glycol, water, and salt). The phantoms were filled inside the designed two-port test system. Numerical models were validated by comparing calculated and measured S-parameters. The sensitivity of the H-slot antenna to the presence of the HEM stroke phenomenon within the phantom of the head was also demonstrated. The main advantage of the proposed H-slot antenna is its small dimensions, easy, inexpensive, and repeatable fabrication as well as mechanical stability.
APA, Harvard, Vancouver, ISO, and other styles
34

Baskar, Karthik, Pavithra Krishnamoorthy, Nehrujee Vishalinee, Padmavarshini Sivakumar, Anita ., and Varshini Karthik. "Investigation on interaction of radiofrequency waves (microwaves) with saphenous veins." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 63. http://dx.doi.org/10.14419/ijet.v7i2.8.10328.

Full text
Abstract:
Varicose veins contract when heated through microwave ablation. Heat application through microwave ablation, the collagen tends to regain its elasticity. In this paper, we propose simulation of the varicose vein with a wearable micro strip patch antenna. ANSYS HFSS 17.2 is an electromagnetic finite element method solver. The phantom model of human skin with normal vein and varicose vein with a wearable micro strip patch antenna was designed using this software. The wearable micro strip patch antenna is designed so that this approach is minimally invasive. The wearable micro strip patch antenna is modelled with a resonant frequency of 9.8 GHz. The temperature of about 45°C is proposed as the treatment for varicose vein.
APA, Harvard, Vancouver, ISO, and other styles
35

Singh, Vimlesh, Priyanka Bansal, and P. K.Singhal. "Microstrip line Antenna Fabrication Material." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 340. http://dx.doi.org/10.14419/ijet.v7i2.8.10437.

Full text
Abstract:
This paper presents an extensive survey of electromagnetic materials used for antenna fabrication, which find application in Civilian life as well as defense life. When a densely packed microwave integrated circuit is designed, it requires protection from higher power transient because of specific polarization and frequency response. To meet specification of such kind of microwave circuits it is desired to exploit properties of fabricating materials, which are not found in nature but can be prepared with specific proportion of chemical element combination. This study provides in-depth responses of materials toward electromagnetic wave's characteristics such as dielectric, flexible electronics, electrical and thermal properties, which have vast potential in communication engineering.
APA, Harvard, Vancouver, ISO, and other styles
36

Gangwar, Ravi Kumar, Pinku Ranjan, and Abhishek Aigal. "Wideband four-element two-segment triangular dielectric resonator antenna with monopole-like radiation." International Journal of Microwave and Wireless Technologies 9, no. 2 (November 20, 2015): 411–18. http://dx.doi.org/10.1017/s1759078715001622.

Full text
Abstract:
In this paper, a wideband two-segmented four-element triangular dielectric resonator antenna (TDRA) with coaxial probe feed has been proposed. The proposed antenna has been analyzed, optimized, and studied through Ansoft HFSS simulation software. The prototype of the proposed antenna has been fabricated and its input characteristics are measured with the help of R&S Vector Network Analyzer. Good agreement has been obtained between simulated and measured results. The proposed design has been compared with two segments TDRA and found wider bandwidth with lower resonant frequency. The proposed antenna provides monopole-like radiation pattern over the entire bandwidth with nearly 33% bandwidth (return loss ≥10 dB) at a resonant frequency 6.9 GHz and 4.93 dBi peak gain. The proposed antenna is suitable for application of C-band microwave frequencies.
APA, Harvard, Vancouver, ISO, and other styles
37

Abdulnabi, Hussein A., and Yasin Yousif Al-Aboosi. "Design of Tunable Multiband Hybrid Graphene Metal Antenna in Microwave Regime." Indonesian Journal of Electrical Engineering and Computer Science 12, no. 3 (December 1, 2018): 1003. http://dx.doi.org/10.11591/ijeecs.v12.i3.pp1003-1009.

Full text
Abstract:
<p>Graphene is an <a title="Allotrope" href="https://en.wikipedia.org/wiki/Allotrope">allotrope</a> (form) of carbon consisting of a single layer of carbon atoms arranged in an <a title="Hexagonal lattice" href="https://en.wikipedia.org/wiki/Hexagonal_lattice">hexagonal lattice</a>. It is the basic structural element of many other allotropes of carbon, such as <a title="Graphite" href="https://en.wikipedia.org/wiki/Graphite">graphite</a>, <a title="Charcoal" href="https://en.wikipedia.org/wiki/Charcoal">charcoal</a>, <a title="Carbon nanotube" href="https://en.wikipedia.org/wiki/Carbon_nanotube">carbon nanotubes</a> and <a title="Fullerene" href="https://en.wikipedia.org/wiki/Fullerene">fullerenes</a>. In this paper, a tunable hybrid metal-graphene antenna in the microwave regime is proposed. This antenna composed of the copper patch and four graphene strips. The antenna designs used for the cellular long-term evolution system and the operating frequency bands of 1.8, 2.5, 2.6, and 3.6 GHz, are evaluated to demonstrate the working principle and the performance tradeoffs. Furthermore, the proposed antenna can be tuned by varying applied DC voltage on the graphene which leads to change in the chemical potential of the graphene and hence the surface conductivity and electrical properties are changed. The simulation results reveal that the antenna operates in multi-band where scattering factor S<sub>11</sub>&lt; -10 dB. In addition, the results show that hybrid metal-graphene frequency reconfigurable antennas can, at the same time, provide a tunable bandwidth and antenna matching.</p>
APA, Harvard, Vancouver, ISO, and other styles
38

Bashir, Tahir, Han Xiong, Abdul Aziz, Muhammad Qureshi, Haroon Ahmed, Abdul Wahab, and Muhammad Umaid. "Design and Analysis of Reflectarray Compound Unit Cell for 5G Communication." Applied Computational Electromagnetics Society 35, no. 12 (February 15, 2021): 1513–18. http://dx.doi.org/10.47037/2020.aces.j.351209.

Full text
Abstract:
In this paper, a single-layer compound unit element is proposed for reflectarray antenna design operating in Ka-band (26.5-29.5GHz) at the center frequency of 28GHz. A systematic study on the performance of a compound unit element is examined first. The structure of the proposed unit element is a unique combination of two different shape simple patches i.e. cross dipole and square patches. The desired phase range is achieved due to the multi-resonance of both patch elements with a single layer without any air-gap. The compound unit element is simulated by computer models of CST Microwave studio based on the Floquet approach (infinite periodic approach) and it has achieved 348.589o reflection phase range. Furthermore, the analysis of the reflection phase range, S-curve gradient, reflection magnitude, fabrication tolerance, and surface current density is also simulated and demonstrated. Based on the remarkable performance, the proposed element can be considered as the best element of single-beam or multi-beam reflectarray antenna design for 5G applications.
APA, Harvard, Vancouver, ISO, and other styles
39

Martínez-Lozano, Andrea, Carolina Blanco-Angulo, Héctor García-Martínez, Roberto Gutiérrez-Mazón, Germán Torregrosa-Penalva, Ernesto Ávila-Navarro, and José María Sabater-Navarro. "UWB-Printed Rectangular-Based Monopole Antenna for Biological Tissue Analysis." Electronics 10, no. 3 (January 27, 2021): 304. http://dx.doi.org/10.3390/electronics10030304.

Full text
Abstract:
This paper presents the design of a printed step-type monopole antenna for biological tissue analysis and medical imaging applications in the microwave frequency range. The design starts from a very simple and widely known rectangular monopole antenna, and different modifications to the antenna geometry are made in order to increase the bandwidth. The antenna dimensions are optimized by means of a parametric analysis of each dimension using a 3-D electromagnetic simulator based on the finite element method. The optimized antenna, with final dimensions of 40 × 36 mm2, is manufactured onto a low-cost FR4 (fiber glass epoxy) substrate. The characteristics of the antenna have been measured inside an anechoic chamber, obtaining an omnidirectional radiation pattern and a working frequency range between 2.7 GHz and 11.4 GHz, which covers the UWB frequencies and enables the use of the antenna in medical imaging applications. Finally, the behaviour of four of these antennas located around a realistic breast model, made with biocompatible materials, has been analysed with the electromagnetic simulator, obtaining good results and demonstrating the usefulness of the designed antenna in the proposed application.
APA, Harvard, Vancouver, ISO, and other styles
40

Mahmood, Sarmad Nozad, Asnor Juraiza Ishak, Ali Jalal, Tale Saeidi, Suhaidi Shafie, Azura Che Soh, Muhammad Ali Imran, and Qammer H. Abbasi. "A Bra Monitoring System Using a Miniaturized Wearable Ultra-Wideband MIMO Antenna for Breast Cancer Imaging." Electronics 10, no. 21 (October 20, 2021): 2563. http://dx.doi.org/10.3390/electronics10212563.

Full text
Abstract:
This paper represents a miniaturized, dual-polarized, multiple input–multiple output (MIMO) wearable antenna. A vertically polarized, leaf-shaped antenna and a horizontally polarized, tree-shaped antenna are designed, and the performance of each antenna is investigated. After designing the MIMO antenna, it is loaded with stubs, parasitic spiral, and shorting pins to reduce the coupling effects and remove the unwanted resonances. Afterward, the two-port MIMO cells are spaced by 2 mm and rotated by 90° to create three more cells. The antennas are designed using two layers of denim and felt substrates with dielectric constants of 1.2 and 1.8, and thicknesses of 0.5 mm and 0.9 mm, respectively, along with the ShieldIt™ conductive textile. The antenna covers a bandwidth of 4.8–30 GHz when the specific absorption rate (SAR) meets the 1 g and 10 g standards. Isolation greater than 18 dB was obtained and mutual coupling was reduced after integrating shorting pins and spiral parasitic loadings. A maximum radiation efficiency and directive gain of 96% and 5.72 dBi were obtained, respectively, with the relatively small size of 11 × 11 × 1.4 mm3 for the single element and final dimensions of 24 × 24 × 1.4 mm3 for the full assembly. The antenna’s performance was examined for both on-body (breast) and free space conditions using near-field microwave imaging. The achieved results such as high fidelity, low SAR, and accuracy in localization of the tumour indicate that the MIMO antenna is a decent candidate for breast cancer imaging.
APA, Harvard, Vancouver, ISO, and other styles
41

Shuai, Chen-Yang, Guang-Ming Wang, and Ya-Wei Wang. "A novel uniplanar wideband magneto-electric dipole antenna element." International Journal of Microwave and Wireless Technologies 9, no. 10 (August 8, 2017): 1983–89. http://dx.doi.org/10.1017/s1759078717000861.

Full text
Abstract:
A novel uniplanar wideband magneto-electric dipole antenna element is proposed in this paper. The proposed antenna is composed of the conventional bow-tie radiation patch as an electric dipole, a semi-circular loop, which works as a magnetic dipole, a coplanar ground plane, two directors with different lengths for enhancing gain, and a microstrip-to-coplanar stripline transition balun. The designed antenna adopts a small-size coplanar ground plane to achieve a uniplanar structure. Consequently, this method reduces the space size immensely and makes the antenna suitable for the array application. In addition, a tapered slot structure is utilized to improve impedance matching. The prototype of the proposed antenna was fabricated and measured. The measured results keep in good accordance with the simulated ones. The simulated results show that the proposed antenna obtains a broad impedance bandwidth of 60.5% from 2.25 to 4.20 GHz (voltage standing wave ratio [VSWR] ≤ 2) which can be applied for wireless local area network (WLAN) (2.4–2.484 GHz), worldwide interoperability for microwave access (WiMAX) (2.5–2.69/3.4–3.69 GHz), and long term evolution (LTE) (2.5–2.69 GHz). Meanwhile, the stable gain, low cross-polarization, stable unidirectional radiation patterns, and low back lobe are obtained within the operating frequency band. The array composed of the proposed antenna elements is also investigated in this paper.
APA, Harvard, Vancouver, ISO, and other styles
42

Al-Naiemy, Yahiea, Taha A. Elwi, Haider R. Khaleel, and Hussain Al-Rizzo. "A Systematic Approach for the Design, Fabrication, and Testing of Microstrip Antennas Using Inkjet Printing Technology." ISRN Communications and Networking 2012 (May 30, 2012): 1–11. http://dx.doi.org/10.5402/2012/132465.

Full text
Abstract:
We present a systematic approach for producing microstrip antennas using the state-of-the-art-inkjet printing technique. An initial antenna design based on the conventional square patch geometry is adopted as a benchmark to characterize the entire approach; the procedure then could be generalized to different antenna geometries and feeding techniques. For validation purposes, the antenna is designed and simulated using two different 3D full-wave electromagnetic simulation tools: Ansoft’s High Frequency Structure Simulator (HFSS), which is based on the Finite Element Method (FEM), and CST Microwave Studio, which is based on the Finite Integration Technique (FIT). The systematic approach for the fabrication process includes the optimal number of printed layers, curing temperature, and curing time. These essential parameters need to be optimized to achieve the highest electrical conductivity, trace continuity, and structural robustness. The antenna is fabricated using Inkjet Printing Technology (IJPT) utilizing Sliver Nanoparticles (SNPs) conductive ink printed by DMP-2800 Dimatix FujiFilm materials printer.
APA, Harvard, Vancouver, ISO, and other styles
43

Moulay, Mohammed, Mehadji Abri, and Hadjira Abri Badaoui. "Quad-Band Bowtie Antenna Design for Wireless Communication System Using an Accurate Equivalent Circuit Model." International Journal of Microwave Science and Technology 2015 (January 22, 2015): 1–7. http://dx.doi.org/10.1155/2015/637607.

Full text
Abstract:
A novel configuration of quad-band bowtie antenna suitable for wireless application is proposed based on accurate equivalent circuit model. The simple configuration and low profile nature of the proposed antenna lead to easy multifrequency operation. The proposed antenna is designed to satisfy specific bandwidth specifications for current communication systems including the Bluetooth (frequency range 2.4–2.485 GHz) and bands of the Unlicensed National Information Infrastructure (U-NII) low band (frequency range 5.15–5.35 GHz) and U-NII mid band (frequency range 5.47–5.725 GHz) and used for mobile WiMAX (frequency range 3.3–3.6 GHz). To validate the proposed equivalent circuit model, the simulation results are compared with those obtained by the moments method of Momentum software, the finite integration technique of CST Microwave studio, and the finite element method of HFSS software. An excellent agreement is achieved for all the designed antennas. The analysis of the simulated results confirms the successful design of quad-band bowtie antenna.
APA, Harvard, Vancouver, ISO, and other styles
44

Rahayu, Yusnita, Indah Permata Sari, Dara Incam Ramadhan, and Razali Ngah. "High gain 5G MIMO antenna for mobile base station." International Journal of Electrical and Computer Engineering (IJECE) 9, no. 1 (February 1, 2019): 468. http://dx.doi.org/10.11591/ijece.v9i1.pp468-476.

Full text
Abstract:
This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2 and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB. It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.
APA, Harvard, Vancouver, ISO, and other styles
45

Kuate, Alain, and Jean-François Essiben. "DESIGN AND SIMULATION OF A 2.4 GHz MONOPOLE ANTENNA ARRAYS WITH PARASITIC ELEMENTS FOR WIRELESS COMMUNICATIONS." American Journal of Computing and Engineering 4, no. 1 (October 23, 2021): 83–91. http://dx.doi.org/10.47672/ajce.825.

Full text
Abstract:
Purpose: This paper presents the design and analysis of a 2.4 GHz monopole antenna arrays with parasitic elements for Wireless communications using the Finite-Element Method. Methodology: The antenna arrays are constituted of five quarter wave antenna monopoles of section ¶. The selected configuration is the side coupling on a plan of mass out of rectangular copper of form posed on a FR-4 substrate materiel with relative permittivity of 4.4 and the thickness of section ¶. Only the central monopole is fed and the others known as parasitic are in short-circuit position by an effect of mutual coupling. The so-called CST Microwave Studio simulation software is used to simulate the design antenna. Findings: It is shown that this array is directive with high gain. Recommendations: To integrate this antenna arrays into wireless telecommunication systems, future research must be based on reducing its weight and dimensions. The use of printed monopole elements based on metamaterials may be a possible path for this integration.
APA, Harvard, Vancouver, ISO, and other styles
46

Pan, Guan-Pu, Kuan-Chih Chiu, Tsung-Lin Li, and Jwo-Shiun Sun. "Design of Broadband Dual-Polarized Rectenna Array for WPT Applications." International Journal of Circuits, Systems and Signal Processing 15 (April 19, 2021): 376–82. http://dx.doi.org/10.46300/9106.2021.15.41.

Full text
Abstract:
A broadband dual-polarized microstrip array antenna designed is proposed. To achieve wide 10 dB bandwidth for broadband operation, the technique of applying a ladder-shaped monopole antenna type with a rectangular slot insertion in the ground plane is implemented. The proposed design showed wide impedance bandwidth of the 1702-2755 MHz (47.2%). In addition, adding an open slot into the rectangular radiating element with an asymmetric ground plane was used and resulted in a slightly displacement of the radiation pattern. The 1 × 2 array type for two ladder-shaped patch array elements are arranged in symmetric feed network. By meticulously arrangement the two array antennas’ positions to achieved good ports isolation, with 10 dB bandwidth for the operating bands in free-space can be achieved. This antenna is used as a rectenna (rectifying antenna), which receives the RF energy of vertical and horizontal polarization wave in free space for 2.4 GHz wireless power transmission. The rectifier circuit setup using two zero biased rectifier and voltage doubler circuit. A matching network designed with small size chip components have a significant improvement in impedance matching and eliminate high order harmonics between the antenna and rectifying circuit. The proposed dual-polarized rectenna provided the RF-to-DC conversion efficiency as high as 78.8% when 14 dBm microwave power was received at 2.4 GHz with a 1 KΩ load.
APA, Harvard, Vancouver, ISO, and other styles
47

Iffat Naqvi, Syeda, Niamat Hussain, Amjad Iqbal, MuhibUr Rahman, Masoud Forsat, Seyed Sajad Mirjavadi, and Yasar Amin. "Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals." Sensors 20, no. 14 (July 15, 2020): 3926. http://dx.doi.org/10.3390/s20143926.

Full text
Abstract:
This work demonstrates an integrated multiple-input multiple-output (MIMO) antenna solution for Long Term Evolution (LTE) and Millimeter-Wave (mm-wave) 5G wireless communication services. The proposed structure is comprised of a two-element LTE MIMO antenna, and a four-element 5G MIMO configuration with rectangular and circular defects in the ground plane. For experimental validation, the proposed structure is fabricated on a Rogers RO4350B substrate with 0.76 mm thickness. The overall substrate dimensions are 75 mm × 110 mm. The proposed structure is capable of operating at 5.29–6.12 GHz (LTE 46 and 47 bands) and 26–29.5 GHz (5G mm-wave) frequency bands. Additionally, the measured peak gain of 5.13 and 9.53 dB is attained respectively for the microwave and mm-wave antennas. Furthermore, the analysis of the MIMO performance metrics demonstrates good characteristics, and excellent field correlation performance across the operating bands. Furthermore, the analysis of the Specific Absorption Rate (SAR) and Power Density (PD) at the lower frequency band (5.9 GHz) and PD only at mm-Wave frequency band (28 GHz) verifies that the proposed antenna system satisfies the international human safety standards. Therefore, the proposed integrated MIMO antenna configuration ascertains to be a potential contender for the forthcoming communication applications.
APA, Harvard, Vancouver, ISO, and other styles
48

Azim, Rezaul, Mohammad Tariqul Islam, Norbahiah Misran, Baharudin Yatim, and Haslina Arshad. "Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz." Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/563830.

Full text
Abstract:
A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.
APA, Harvard, Vancouver, ISO, and other styles
49

Abdullah, Abdulkareem, Asmaa Majeed, Khalil Sayidmarie, and Raed Abd-Alhameed. "Two Elements Elliptical Slot CDRA Array with Corporate Feeding For X-Band Applications." Iraqi Journal for Electrical and Electronic Engineering 10, no. 1 (June 1, 2014): 48–54. http://dx.doi.org/10.37917/ijeee.10.1.6.

Full text
Abstract:
In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dBi at frequency of 10.7GHz. This is about 2.06dBi enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 5050mm2.
APA, Harvard, Vancouver, ISO, and other styles
50

Jangid, K. G., P. K. Jain, B. R. Sharma, V. K. Saxena, V. S. Kulhar, and D. Bhatnagar. "Ring Slotted Circularly Polarized U-Shaped Printed Monopole Antenna for Various Wireless Applications." Advanced Electromagnetics 6, no. 1 (March 11, 2017): 70. http://dx.doi.org/10.7716/aem.v6i1.460.

Full text
Abstract:
In this communication, the design and performance of strip line feed U-shaped printed monopole antenna for Bluetooth/WI-Max/WLAN communications systems is reported. Proposed monopole antenna has an eight shaped slot on the patch and an eight shaped ring structure in the ground plane with metallic reflector just beneath the radiating element. The CST Microwave Studio 2014 is used for the simulation analysis of antennas while measurements are performed by applying Vector Network Analyzer. This radiating structure provides triple broad impedance bandwidths i.e. 265MHz (in 2.280 GHz to 2.545 GHz frequency range), 116 MHz (in 2.660 GHz to 2.776 GHz frequency range) and 2.12 GHz (in 3.83 GHz to 5.956 GHz frequency range), wider 3dB axial ratio bandwidth 1.33 GHz (in 4.69GHz to 6.02GHz range), flat gain (with maximum gain close to 5.56 (dBi) and good radiation patterns in the desired frequency range. This antenna may be a useful structure for 2.45GHz Bluetooth communication band as well as in WLAN and Wi-Max communications bands.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography