Academic literature on the topic 'Microstructured optical fibre'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microstructured optical fibre.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microstructured optical fibre"
Argyros, Alexander. "Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre-Based Metamaterials." ISRN Optics 2013 (February 12, 2013): 1–22. http://dx.doi.org/10.1155/2013/785162.
Full textvan Eijkelenborg, Martijn, Maryanne Large, Alexander Argyros, Joseph Zagari, Steven Manos, Nader Issa, Ian Bassett, et al. "Microstructured polymer optical fibre." Optics Express 9, no. 7 (September 24, 2001): 319. http://dx.doi.org/10.1364/oe.9.000319.
Full textChen, Michael J., Yvonne M. Stokes, Peter Buchak, Darren G. Crowdy, and Heike Ebendorff-Heidepriem. "Microstructured optical fibre drawing with active channel pressurisation." Journal of Fluid Mechanics 783 (October 13, 2015): 137–65. http://dx.doi.org/10.1017/jfm.2015.570.
Full textKerbage, C., P. Steinvurzel, A. Hale, R. S. Windeler, and B. J. Eggleton. "Microstructured optical fibre with tunable birefringence." Electronics Letters 38, no. 7 (2002): 310. http://dx.doi.org/10.1049/el:20020233.
Full textEbendorff-Heidepriem, Heike, Tanya M. Monro, Martijn A. van Eijkelenborg, and Maryanne C. J. Large. "Extruded high-NA microstructured polymer optical fibre." Optics Communications 273, no. 1 (May 2007): 133–37. http://dx.doi.org/10.1016/j.optcom.2007.01.004.
Full textSójka, L., L. Pajewski, M. Śliwa, P. Mergo, T. M. Benson, S. Sujecki, and E. Bereś-Pawlik. "Multicore microstructured optical fibre for sensing applications." Optics Communications 344 (June 2015): 71–76. http://dx.doi.org/10.1016/j.optcom.2015.01.005.
Full textVukovic, Natasha, Neil G. R. Broderick, and Francesco Poletti. "Parabolic Pulse Generation Using Tapered Microstructured Optical Fibres." Advances in Nonlinear Optics 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/480362.
Full textDianov, Evgenii M., A. A. Frolov, Igor' A. Bufetov, S. L. Semenov, Yury K. Chamorovsky, G. A. Ivanov, and Igor' L. Vorob'ev. "The fibre fuse effect in microstructured fibres." Quantum Electronics 34, no. 1 (January 31, 2004): 59–61. http://dx.doi.org/10.1070/qe2004v034n01abeh002581.
Full textCordeiro, Cristiano M. B., Marcos A. R. Franco, Giancarlo Chesini, Elaine C. S. Barretto, Richard Lwin, C. H. Brito Cruz, and Maryanne C. J. Large. "Microstructured-core optical fibre for evanescent sensing applications." Optics Express 14, no. 26 (2006): 13056. http://dx.doi.org/10.1364/oe.14.013056.
Full textZhang, Yani, Kang Li, Lili Wang, Liyong Ren, Wei Zhao, Runcai Miao, Maryanne C. J. Large, and Martijn A. van Eijkelenborg. "Casting preforms for microstructured polymer optical fibre fabrication." Optics Express 14, no. 12 (2006): 5541. http://dx.doi.org/10.1364/oe.14.005541.
Full textDissertations / Theses on the topic "Microstructured optical fibre"
Hillman, Christopher Wyndham John. "Scanning near-field optical microscope characterisation of microstructured optical fibre devices." Thesis, University of Southampton, 2002. https://eprints.soton.ac.uk/15484/.
Full textCaillaud, Céline. "Élaborations et caractérisations de fibres optiques microstructurées en verres de chalcogénures pour le moyen infrarouge." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S062/document.
Full textChalcogenide glasses combine several properties : large transparency in the infrared range, a high refractive index (n>2) and strong non-linear properties. The realization of microstructured optical fibers (MOFs) exacerbates non-linear effects more particularly by varying the opto-geometrical parameters of the fibers (d and Λ). Thus, single-mode propagation can be obtained and also generation of non-linear effects. The realization of high purity chalcogenide glasses is needed. In fact, absorption bands limiting the transparency of the fibers must be identified and minimized. For this, monitoring and qualification of components used in the synthesis of glasses should be undertaken. A protocol of synthesis and purification by heat treatment was implemented in this direction. The technique to elaborate MOFs is the casting method. It consists of flowing a glass on a silica mold. The geometry is the negative shape of the desired fiber. This method allows the realization of multimode or single-mode fiber in the 1-10 μm window. The realization of infrared sources was developed in the manuscript. The generation of a supercontinuum with a suspended-core fiber has been presented and also by the realization of a quantum cascade laser (QCL) coupled into a singlemode fiber. In addition, a polarization-maintaining fiber (PMF) having a group birefringence of the order of 10-3 was developed through the evolution of the silica mold. In addition, an optical coupler, an all-solid fiber and an infrared bundle were achieved during this thesis
Issa, Nader. "Modes and propagation in microstructured optical fibres." University of Sydney. Physics and Optical Fibre Technology Centre, 2005. http://hdl.handle.net/2123/613.
Full textLyytik�inen, Katja Johanna. "Control of complex structural geometry in optical fibre drawing." University of Sydney. School of Physics and the Optical Fibre Technology Centre, 2004. http://hdl.handle.net/2123/597.
Full textLyytikäinen, Katja Johanna. "Control of complex structural geometry in optical fibre drawing." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/597.
Full textBalme, Coraline. "Génération de sources optiques fibrées très hautes cadences et caractérisation de fibres optiques microstructurées en verre de Chalcogénure." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS022/document.
Full textThis memory of thesis s' registered voter in the context of the FUTUR project financed by l'ANR and concerning the development of optical finctions fot the high bit-rate transmissions in the Network heart and carries on very high rates optical fibers sources generation and the optical chalcogenide microstructured fiber charaterization. For this purpose, we study the linear and non-linear characteristics of microstructured chalcogenide fibers conceived and realized in various collaborations within the framework of the ANR FUTUR project. For that a great number of characterizations methods were developed giving a comparison between a standard single mode fiber and there microstructured chalcogenide fibers. For exemple, an interferometric setup for the chromatic dispersion measurement for short sample, or many experimental setup allowing the nonlinear properties characterizations as of these fibers (Raman scattering, nonlinear Kerr Coefficient). The second part of this memory presents the settling of sinusoidal beat conversion into a high bit rate generation method. It is shown in this manuscript that this technique was exploited with readiest of its limits, by obtaining extremely short pulses and by very high bit-rate. The pulses train at very high rates were characterized by an experimental device SHG-FROG. A demonstration of the multiplication of the bit-rate by two at summer shown by Talbot effect
Kuhlmey, Boris T. "Theoretical and numerical investigation of the physics of microstructured optical fibres." Connect to full text, 2004. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20040715.171105.
Full textBibliography: leaves 196-204.
Washburn, Brian Richard. "Dispersion and nonlinearities associated with supercontinuum generation in microstructure fibers." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/30964.
Full textLi, Qingquan. "Microstructured optical fibres in chalcogenide glass." Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602615.
Full textIssa, Nader A. "Modes and propagation in microstructured optical fibres." Connect to full text, 2005. http://hdl.handle.net/2123/613.
Full textTitle from title screen (viewed 21 May 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Optical Fibre Technology Centre, School of Physics. Includes bibliographical references. Also available in print form.
Books on the topic "Microstructured optical fibre"
Large, Maryanne C. J., Leon Poladian, Geoff W. Barton, and Martijn A. van Eijkelenborg. Microstructured Polymer Optical Fibres. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68617-2.
Full textLarge, Maryanne, Leon Poladian, Geoff Barton, and Martijn A. van Eijkelenborg. Microstructured Polymer Optical Fibres. Springer London, Limited, 2007.
Find full textLarge, Maryanne, Leon Poladian, Geoff Barton, and Martijn A. van Eijkelenborg. Microstructured Polymer Optical Fibres. Springer, 2014.
Find full textMicrostructured Polymer Optical Fibres. Springer, 2007.
Find full textSelleri, Stefano, and Stavros Pissadakis. Optofluidics, Sensors and Actuators in Microstructured Optical Fibres. Elsevier Science & Technology, 2015.
Find full textHayes, Brian S., and Luther M. Gammon. Optical Microscopy of Fiber-Reinforced Composites. ASM International, 2010. http://dx.doi.org/10.31399/asm.tb.omfrc.9781627083492.
Full textYang, Minghong, Dongwen Lee, and Yu-Tang Dai. Optical Sensing: Microstructured Fibers, Fiber Micromachining, and Functional Coatings. SPIE, 2015. http://dx.doi.org/10.1117/3.2195943.
Full textBook chapters on the topic "Microstructured optical fibre"
Manos, Steven, and Peter J. Bentley. "Evolving Microstructured Optical Fibres." In Evolutionary Computation in Practice, 87–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75771-9_5.
Full textRifat, Ahmmed A., Md Rabiul Hasan, Rajib Ahmed, and Andrey E. Miroshnichenko. "Microstructured Optical Fiber-Based Plasmonic Sensors." In Computational Photonic Sensors, 203–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_9.
Full textWoyessa, Getinet, Andrea Fasano, and Christos Markos. "Microstructured Polymer Optical Fiber Gratings and Sensors." In Handbook of Optical Fibers, 1–43. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1477-2_2-1.
Full textWoyessa, Getinet, Andrea Fasano, and Christos Markos. "Microstructured Polymer Optical Fiber Gratings and Sensors." In Handbook of Optical Fibers, 2037–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_2.
Full textNguyen, L. V., S. C. Warren-Smith, and K. Hill. "Optical Biosensor Using an Exposed Core Microstructured Optical Fiber." In 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6), 481–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4361-1_81.
Full textTuma, Margaret. "Integrated and Fiber Optics Sensors “Basic Concepts and Devices”." In Integrated Optics, Microstructures, and Sensors, 237–66. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2273-7_10.
Full textAdachi, Muneyuki, Keisaku Yamane, Ryuji Morita, and Mikio Yamashita. "Microstructured fiber feedback pulse compression to few optical cycles." In Springer Series in Chemical Physics, 49–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_15.
Full textSharma, Dinesh Kumar, and Saurabh Mani Tripathi. "Gaussian-Like Mode-Field Generation in Microstructured Optical Fiber." In Springer Proceedings in Physics, 699–702. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_161.
Full textSingh, Hukam, Dinesh Kumar Sharma, and Saurabh Mani Tripathi. "Mode-Field Expansion in Index-Guiding Microstructured Optical Fiber." In Springer Proceedings in Physics, 719–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_166.
Full textSharma, D. K., and S. M. Tripathi. "Theoretical Implications for Surface Plasmon Resonance Based on Microstructured Optical Fiber." In Springer Proceedings in Physics, 43–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6467-3_6.
Full textConference papers on the topic "Microstructured optical fibre"
Cox, Felicity M., Maryanne C. J. Large, Cristiano M. B. Cordeiro, Richard Lwin, and Alexander Argyros. "Slotted microstructured optical fibers." In 19th International Conference on Optical Fibre Sensors, edited by David D. Sampson. SPIE, 2008. http://dx.doi.org/10.1117/12.785948.
Full textSazio, P. J. A., A. Amezcua, C. E. Finlayson, H. Fang, D. J. Won, T. Scheidematel, B. Jackson, N. Baril, V. Gopalan, and J. Badding. "Microstructured optical fibre semiconductor metamaterials." In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1547863.
Full textTown, Graham E., Rod M. Chaplin, Michael J. Withford, and David Baer. "Randomly microstructured polymer optical fibre." In 2006 Australian Conference on Optical Fibre Technology (ACOFT). IEEE, 2006. http://dx.doi.org/10.1109/acoft.2006.4519226.
Full textAmezcua, A., C. E. Finlayson, P. J. A. Sazio, H. Fang, D. J. Won, T. Scheidematel, B. Jackson, N. Baril, V. Gopalan, and J. Badding. "Microstructured Optical Fibre Semiconductor Metamaterials." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/assp.2005.wb34.
Full textWebb, David J., Helen Dobb, Karen E. Carroll, Kyriacos Kalli, M. Aressy, S. Kukureka, Alex Argyros, Maryanne C. Large, and Martjin A. van Eijkelenborg. "Fibre Bragg Gratings Recorded in Microstructured Polymer Optical Fibre." In Optical Fiber Sensors. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ofs.2006.the64.
Full textKohoutek, T., Z. Duan, H. Kawashima, X. Yan, T. Suzuki, M. Matsumoto, Takashi Misumi, and Y. Ohishi. "Chalcogenide-tellurite composite microstructured optical fibre." In SPIE OPTO, edited by Shibin Jiang, Michel J. F. Digonnet, and J. Christopher Dries. SPIE, 2012. http://dx.doi.org/10.1117/12.905734.
Full textYu, H. C. Y., A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, Linggen Kong, F. Ladouceur, and S. McNiven. "Nanoparticle-doped microstructured polymer optical fibre." In 33rd European Conference and Exhibition on Optical Communication - ECOC 2007. IEE, 2007. http://dx.doi.org/10.1049/ic:20070215.
Full textSharma, Dinesh Kumar, and Anurag Sharma. "Optical Properties of Square-Lattice Microstructured Optical Fibers." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/photonics.2014.s5a.15.
Full textOrtigosa-Blanch, Arturo, Antonio Diez, Martina Delgado-Pinar, Jose Luis Cruz, and Miguel V. Andres. "Nonlinear highly birefringent microstructured fibers." In Second European Workshop on Optical Fibre Sensors. SPIE, 2004. http://dx.doi.org/10.1117/12.566726.
Full textLwin, Richard, Alexander Argyros, Sergio Leon-Saval, and Maryanne C. J Large. "Low loss microstructured Polymer Optical Fibre (mPOF)." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ofc.2011.ows6.
Full text