Academic literature on the topic 'Microstructured optical fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microstructured optical fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microstructured optical fibers"
Kerbage, Charles, and Benjamin J. Eggleton. "Microstructured Optical Fibers." Optics and Photonics News 13, no. 9 (September 1, 2002): 38. http://dx.doi.org/10.1364/opn.13.9.000038.
Full textWójcik, Grzegorz Michał. "Optimization of silica glass capillary and rods drawing process." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 19. http://dx.doi.org/10.4302/plp.v11i1.891.
Full textArgyros, Alexander. "Microstructured Polymer Optical Fibers." Journal of Lightwave Technology 27, no. 11 (June 2009): 1571–79. http://dx.doi.org/10.1109/jlt.2009.2020609.
Full textPchelkin, G. A., V. B. Fadeenko, V. V. Davydov, and V. Yu Rud. "Control of the mode composition of optical radiation in a microstructured fiber." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012158. http://dx.doi.org/10.1088/1742-6596/2086/1/012158.
Full textShao, Liyang, Zhengyong Liu, Jie Hu, Dinusha Gunawardena, and Hwa-Yaw Tam. "Optofluidics in Microstructured Optical Fibers." Micromachines 9, no. 4 (March 24, 2018): 145. http://dx.doi.org/10.3390/mi9040145.
Full textMonro, Tanya M., and Heike Ebendorff-Heidepriem. "PROGRESS IN MICROSTRUCTURED OPTICAL FIBERS." Annual Review of Materials Research 36, no. 1 (August 2006): 467–95. http://dx.doi.org/10.1146/annurev.matsci.36.111904.135316.
Full textYan, M., and P. Shum. "Antiguiding in microstructured optical fibers." Optics Express 12, no. 1 (2004): 104. http://dx.doi.org/10.1364/opex.12.000104.
Full textBourdine, Anton V., Alexey Yu Barashkin, Vladimir A. Burdin, Michael V. Dashkov, Vladimir V. Demidov, Konstantin V. Dukelskii, Alexander S. Evtushenko, et al. "Twisted Silica Microstructured Optical Fiber with Equiangular Spiral Six-Ray Geometry." Fibers 9, no. 5 (May 2, 2021): 27. http://dx.doi.org/10.3390/fib9050027.
Full textChien, Hsi Hsin, Kung Jeng Ma, Yun Peng Yeh, and Choung Lii Chao. "Microstructure and Mechanical Properties of Air Core Polymer Photonic Crystal Fibers." Advanced Materials Research 233-235 (May 2011): 3000–3004. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.3000.
Full textKnight, J. C., T. A. Birks, B. J. Mangan, and P. St J. Russell. "Microstructured Silica as an Optical-Fiber Material." MRS Bulletin 26, no. 8 (August 2001): 614–17. http://dx.doi.org/10.1557/mrs2001.154.
Full textDissertations / Theses on the topic "Microstructured optical fibers"
Kuhlmey, Boris T. "Theoretical and numerical investigation of the physics of microstructured optical fibres." Connect to full text, 2004. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20040715.171105.
Full textBibliography: leaves 196-204.
Issa, Nader. "Modes and propagation in microstructured optical fibres." University of Sydney. Physics and Optical Fibre Technology Centre, 2005. http://hdl.handle.net/2123/613.
Full textIssa, Nader A. "Modes and propagation in microstructured optical fibres." Connect to full text, 2005. http://hdl.handle.net/2123/613.
Full textTitle from title screen (viewed 21 May 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Optical Fibre Technology Centre, School of Physics. Includes bibliographical references. Also available in print form.
Osório, Jonas Henrique 1989. "Specialty optical fibers for sensing = Fibras ópticas especiais para sensoriamento." [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/330348.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-02T14:50:23Z (GMT). No. of bitstreams: 1 Osorio_JonasHenrique_D.pdf: 57449332 bytes, checksum: 92f06bf0e96b31630478243a818a7fd6 (MD5) Previous issue date: 2017
Resumo: Nesta tese, fibras ópticas especiais são estudadas para fins de sensoriamento. Primei-ramente, propomos a estrutura denominada fibra capilar com núcleo embutido (embedded-core capillary fibers) para realização de sensoriamento de pressão. Estudos numéricos e analíticos foram realizados e mostraram que altas sensibilidades a variações de pressão poderiam ser al-cançadas com esta estrutura simplificada, que consiste de um capilar dotado de um núcleo, dopado com germânio, em sua parede. Experimentos permitiram medir uma sensibilidade de (1.04 ± 0.01) nm/bar, que é um valor alto quando comparado a outros sensores de pressão ba-seados em fibras microestruturadas. Ademais, estudamos fibras do tipo surface-core, que são fibras cujos núcleos são colocados na superfície externa da fibra. Nesta abordagem, redes de Bragg foram utilizadas para obter sensores de índice de refração ¿ fazendo-se uso da interação entre o campo evanescente do modo guiado no núcleo e o ambiente externo à fibra ¿ e de cur-vatura ¿ ao se explorar o fato de que, nestas fibras, o núcleo se encontra fora do centro geomé-trico da mesma. As sensibilidades a variações de índice de refração e curvatura medidas, 40 nm/RIU em torno de 1.41 e 202 pm/m-1 comparam-se bem a outros sensores baseados em redes de Bragg. Outrossim, fibras capilares poliméricas foram investigadas como sensores de temperatura e pressão. Para a descrição do sensor de temperatura, usou-se um modelo analítico para simular o espectro de transmissão dos capilares e a sua dependência com as variações de temperatura. No que tange à aplicação de sensoriamento de pressão, variações nas espessuras dos capilares devido à ação da pressão foram calculadas e relacionadas à sensibilidade da me-dida de monitoramento. Nestas duas aplicações, realizações experimentais também são repor-tadas. Finalmente, oportunidades adicionais de sensoriamento ao se utilizar fibras ópticas es-peciais são apresentadas, a saber, um sensor de pressão para dois ambientes baseados em fibras de cristal fotônico, um sensor de três parâmetros baseado em redes de Bragg, fibras afinadas e interferência multimodal, um sensor de nível de líquido baseado em redes de Bragg e interfe-rência multimodal e um sensor de temperatura baseado em fibras embedded-core preenchidas com índio. Os resultados aqui reportados demonstram o potencial das fibras ópticas em forne-cerem plataformas de sensoriamento para alcançar medidas de diferentes tipos de parâmetros com alta sensibilidade e resolução adequada
Abstract: In this thesis, specialty optical fibers for sensing applications are investigating. Firstly, we propose the embedded-core capillary fiber structure for acting as a pressure sensor. Analyt-ical and numerical studies were performed and showed that high pressure sensitivity could be achieved with this simplified fiber structure, which consists of a capillary structure with a germanium-doped core placed within the capillary wall. Experiments allowed measuring a sensitivity of (1.04 ± 0.01) nm/bar, which is high when compared to other microstructured optical fiber-based pressure sensors. Moreover, we studied the so-called surface-core optical fibers, which are fibers whose cores are placed at the external boundary of the fiber. In this approach, Bragg gratings were used to obtain refractive index ¿ making use of the interaction between the guided mode evanescent field and the external medium ¿ and directional curva-ture sensors ¿ by exploring the off-center core position. The measured refractive index and the curvature sensitivities, respectively 40 nm/RIU around 1.41 and 202 pm/m-1, compares well to other fiber Bragg grating-based sensors. Additionally, antiresonant polymer capillary fibers were investigated as temperature and pressure sensors. For the temperature sensing descrip-tion, one used an analytical model to simulate the transmission spectra of such fibers and the dependence on temperature variations. Regarding the pressure sensing application, pressure-induced capillary wall thickness variations were analytically accounted and related to the sys-tem pressure sensitivity. In both these applications, experimental data were presented. Finally, additional opportunities using specialty optical fibers were presented, namely, a photonic-crystal fiber-based dual-environment pressure sensor, a three parameters sensor using Bragg gratings, tapered fibers and multimode interference, a liquid-level sensor based on Bragg grat-ings and multimode interference, and a temperature sensor based in an embedded-core fiber filled with indium. The results reported herein demonstrates the potential of optical fibers for providing sensing platforms to attain measurements of different sort of parameters with highly sensitivity and improved resolutions
Doutorado
Física
Doutor em Ciências
152993/2013-4
CNPQ
Arvas, Serhend. "A method of moments analysis of microstructured optical fibers." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.
Full textKuhlmey, Boris T. "Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres." University of Sydney and Universite Aix-Marseille III. School of Physics, 2003. http://hdl.handle.net/2123/560.
Full textMeneghetti, Marcello. "Microstructured optical fibers based on chalcogenide glasses for mid-IR supercontinuum generation." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S081.
Full textIn the framework of the SUPUVIR project, whose objective is to improve supercontinuum sources from the ultraviolet to the mid infrared, this work is focused on the development and fabrication of mid-IR optical fibers. More specifically the objective set was to realize high quality infrared (in the 2-12 μm wavelength range) fibers based on chalcogenide glasses, with a dispersion profile tailored by combining glass sciences and innovative fiber shaping techniques, to be used for mid- IR supercontinuum generation. In order to be suitable for this application, the fiber design needs to be a best compromise between nonlinear parameters (mainly controlled by the core size and chalcogenide composition), position of the zero dispersion wavelength (depending on desired pump wavelength), power handling properties and breadth of the transmission window. In this thesis, the production and characterization of microstructured fibers is detailed, starting from the choice and purification of the most proper chalcogenide glasses up to the production of a working prototype of commercial mid infrared supercontinuum fiber source, spanning from 2 to 10 μm, and to its application to spectroscopy. In addition, the development of the first chalcogenide graded index (Grin) fiber reported in literature is described, together with its characterization and the application of its production technique to the fabrication of Grin microlenses
Granzow, Nicolai [Verfasser], and Philip [Akademischer Betreuer] Russell. "Microstructured Optical Fibers with Incorporated Nonlinear Glasses / Nicolai Granzow. Betreuer: Philip Russell." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2013. http://d-nb.info/103747225X/34.
Full textWahle, Markus [Verfasser]. "Microstructured fibers with liquid crystals: tuning of optical transmission and dispersion / Markus Wahle." Paderborn : Universitätsbibliothek, 2017. http://d-nb.info/1128210959/34.
Full textSudirman, Azizahalhakim. "Increased Functionality of Optical Fibers for Life-Science Applications." Doctoral thesis, KTH, Kvantelektronik och -optik, QEO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145319.
Full textQC 20140516
Books on the topic "Microstructured optical fibers"
Large, Maryanne C. J., Leon Poladian, Geoff W. Barton, and Martijn A. van Eijkelenborg. Microstructured Polymer Optical Fibres. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68617-2.
Full textZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Find full textMicrostructured Polymer Optical Fibres. Springer, 2007.
Find full textSelleri, Stefano, and Stavros Pissadakis. Optofluidics, Sensors and Actuators in Microstructured Optical Fibres. Elsevier Science & Technology, 2015.
Find full textYang, Minghong, Dongwen Lee, and Yu-Tang Dai. Optical Sensing: Microstructured Fibers, Fiber Micromachining, and Functional Coatings. SPIE, 2015. http://dx.doi.org/10.1117/3.2195943.
Full textOptofluidics, Sensors and Actuators in Microstructured Optical Fibers. Elsevier, 2015. http://dx.doi.org/10.1016/c2014-0-02816-x.
Full textLarge, Maryanne, Leon Poladian, Geoff Barton, and Martijn A. van Eijkelenborg. Microstructured Polymer Optical Fibres. Springer, 2014.
Find full textHayes, Brian S., and Luther M. Gammon. Optical Microscopy of Fiber-Reinforced Composites. ASM International, 2010. http://dx.doi.org/10.31399/asm.tb.omfrc.9781627083492.
Full textOptical Biomimetics Materials And Applications. Woodhead Publishing, 2012.
Find full textBook chapters on the topic "Microstructured optical fibers"
Lægsgaard, Jesper, Anders Bjarklev, Tanya Monro, and Tanya Monro. "Microstructured optical fibers." In Handbook of Optoelectronics, 711–40. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: CRC Press, 2017. http://dx.doi.org/10.1201/9781315157009-20.
Full textMonro, T. M., H. Ebendorff-Heidepriem, and X. Feng. "Non-Silica Microstructured Optical Fibers." In Ceramic Transactions Series, 29–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407233.ch3.
Full textWoyessa, Getinet, Andrea Fasano, and Christos Markos. "Microstructured Polymer Optical Fiber Gratings and Sensors." In Handbook of Optical Fibers, 1–43. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1477-2_2-1.
Full textWoyessa, Getinet, Andrea Fasano, and Christos Markos. "Microstructured Polymer Optical Fiber Gratings and Sensors." In Handbook of Optical Fibers, 2037–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_2.
Full textSharma, Dinesh Kumar, and Anurag Sharma. "Tellurite Glass Microstructured Optical Fibers: An Analytical Approach." In Springer Proceedings in Physics, 187–94. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_24.
Full textRoy Chaudhuri, Partha, and Kajol Mondal. "Light Propagation in Microstructured Optical Fibers and Designing High Gain Fiber Amplifier." In Springer Proceedings in Physics, 47–54. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_7.
Full textEstudillo-Ayala, Julián M., Roberto Rojas-Laguna, Juan C. Hernández Garcia, Daniel Jauregui-Vazquez, and Juan M. Sierra Hernandez. "Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers." In Springer Series in Optical Sciences, 159–72. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9481-7_10.
Full textManos, Steven, and Peter J. Bentley. "Evolving Microstructured Optical Fibres." In Evolutionary Computation in Practice, 87–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75771-9_5.
Full textRanka, J. K., and A. L. Gaeta. "Optical Properties of Microstructure Optical Fibers." In Springer Series in Photonics, 269–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05144-3_12.
Full textRifat, Ahmmed A., Md Rabiul Hasan, Rajib Ahmed, and Andrey E. Miroshnichenko. "Microstructured Optical Fiber-Based Plasmonic Sensors." In Computational Photonic Sensors, 203–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_9.
Full textConference papers on the topic "Microstructured optical fibers"
"OWL - Microstructured fibers." In 2005 Optical Fiber Communications Conference Technical Digest. IEEE, 2005. http://dx.doi.org/10.1109/ofc.2005.192871.
Full textSchmidt, Markus. "Plasmonic microstructured optical fibers." In 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193571.
Full textTroles, J., and L. Brilland. "Chalcogenide microstructured optical fibers." In 2012 Photonics Global Conference (PGC). IEEE, 2012. http://dx.doi.org/10.1109/pgc.2012.6458078.
Full textCox, Felicity M., Maryanne C. J. Large, Cristiano M. B. Cordeiro, Richard Lwin, and Alexander Argyros. "Slotted microstructured optical fibers." In 19th International Conference on Optical Fibre Sensors, edited by David D. Sampson. SPIE, 2008. http://dx.doi.org/10.1117/12.785948.
Full textOhishi, Yasutake. "New Prospect of Tellurite Microstructured Fibers." In Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.somd1.
Full textWang, Yiping. "Optical fiber gratings written in microstructured optical fibers." In 2012 Photonics Global Conference (PGC). IEEE, 2012. http://dx.doi.org/10.1109/pgc.2012.6458115.
Full textDianov, E., A. Frolov, I. Bufetov, Y. Chamorovsky, G. Ivanov, and I. Vorobjev. "Fiber fuse effect in microstructured fibers." In OFC 2003 - Optical Fiber Communication Conference and Exhibition. IEEE, 2003. http://dx.doi.org/10.1109/ofc.2003.316108.
Full textJiang, X., N. Y. Joly, R. Sopalla, F. Babic, J. Huang, and P. St J. Russell. "Soft glass microstructured fibers and their applications." In Specialty Optical Fibers. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/sof.2016.sow3g.1.
Full textAdam, Jean-Luc, Johann Trolès, and Laurent Brilland. "Chalcogenide Microstructured Optical Fibers for IR Photonics." In Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.sotub2.
Full textOhishi, Yasutake. "Highly Nonlinear Soft Glass Microstructured Optical Fiber." In Specialty Optical Fibers. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/sof.2014.som2b.1.
Full text