Academic literature on the topic 'Microstructural modification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microstructural modification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microstructural modification"
Abdalla, Ayad Omran, Astuty Amrin, Roslina Mohammad, and M. A. Azmah Hanim. "Microstructural Study of Newly Designed Ti-6Al-1Fe Alloy through Deformation." Solid State Phenomena 264 (September 2017): 54–57. http://dx.doi.org/10.4028/www.scientific.net/ssp.264.54.
Full textTaltavull, Catalina, Belen Torres, Antonio Julio Lopez, and Joaquin Rams. "Relationship between Laser Parameters - Microstructural Modification - Mechanical Properties of Laser Surface Melted Magnesium Alloy AZ91D." Materials Science Forum 765 (July 2013): 678–82. http://dx.doi.org/10.4028/www.scientific.net/msf.765.678.
Full textHerbster, Maria, Karsten Harnisch, Paulina Kriegel, Andreas Heyn, Manja Krüger, Christoph H. Lohmann, Jessica Bertrand, and Thorsten Halle. "Microstructural Modification of TiAl6V4 Alloy to Avoid Detrimental Effects Due to Selective In Vivo Crevice Corrosion." Materials 15, no. 16 (August 19, 2022): 5733. http://dx.doi.org/10.3390/ma15165733.
Full textJeong, G. C., H. J. Choi, Yong Ho Sohn, and S. I. Kwun. "Effects of Combined Surface Modification on Adhesion Strength of CrN Coatings for STS420." Defect and Diffusion Forum 297-301 (April 2010): 1334–39. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.1334.
Full textLiu, Z., H. Liu, F. Viejo, Z. Aburas, and M. Rakhes. "Laser-induced microstructural modification for corrosion protection." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, no. 5 (March 26, 2010): 1073–85. http://dx.doi.org/10.1243/09544062jmes1858.
Full textZhang, Xiao Feng, and Lutgard C. De Jonghe. "Thermal Modification of Microstructures and Grain Boundaries in Silicon Carbide." Journal of Materials Research 18, no. 12 (December 2003): 2807–13. http://dx.doi.org/10.1557/jmr.2003.0391.
Full textLiang, Yu, Hao Ding, Sijia Sun, and Ying Chen. "Microstructural Modification and Characterization of Sericite." Materials 10, no. 10 (October 16, 2017): 1182. http://dx.doi.org/10.3390/ma10101182.
Full textPatra, Srabani, Janani Narayanasamy, Thamayanthi Panneerselvam, and Ramaswamy Murugan. "Review—Microstructural Modification in Lithium Garnet Solid-State Electrolytes: Emerging Trends." Journal of The Electrochemical Society 169, no. 3 (March 1, 2022): 030548. http://dx.doi.org/10.1149/1945-7111/ac5c99.
Full textFlorea, Costel, Costică Bejinariu, Ioan Carcea, Viorel Paleu, Daniela Chicet, and Nicanor Cimpoeşu. "Preliminary Results on Microstructural, Chemical and Wear Analyze of New Cast Iron with Chromium Addition." Key Engineering Materials 660 (August 2015): 97–102. http://dx.doi.org/10.4028/www.scientific.net/kem.660.97.
Full textSnopiński, Przemysław. "Effect of Al10Sr and TiB on the Microstructure and Solidification Behavior of AlMg5Si2Mn Alloy." Solid State Phenomena 326 (November 2, 2021): 111–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.326.111.
Full textDissertations / Theses on the topic "Microstructural modification"
Illing, Cyprian A. W. "Chemical Mechanisms and Microstructural Modification of Alloy Surface Activation for Low-Temperature Carburization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1521753968828438.
Full textNafisi, Shahrooz. "Effects of grain refining and modification on the microstructural evolution of semi-solid 356 alloy = Effets de l'affinage des grains et de la modification sur l'évolution microstructurale de l'alliage 356 semi-solide /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2006. http://theses.uqac.ca.
Full textLongworth, Hai Pham. "Microstructural modification of thin films and its relation to the electromigration-limited reliability of VLSI interconnects." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13114.
Full textLiu, Xiaorui. "Crystallographic and microstructural study of as-cast and heat-treated Srmodified Al-12.7Si alloys." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0103/document.
Full textAl-Si alloys have attracted considerable attention due to their importance to industrial applications. In the present work, both crucible slowly solidified and slowly directionally solidified (DS) high-purity Al-12.7 wt. % Si alloys with and without 400 ppm Sr addition have been prepared and heat treated. The influence of Sr addition and post heat treatments on the microstructural and crystallographic features of the eutectic phases has been systematically studied. The growth characteristics of eutectic Si in the unmodified and the Sr-modified Al-12.7Si alloys were investigated. For the non-modification case, the formation of repeated single-orientation twin variants enables rapid growth of eutectic Si according to the twin plane re-entrant (TPRE) mechanism. Microscopically, Si crystals are plate-like elongated in one <1 1 0> direction that is not in accordance with the <1 1 2> growth assumed by the TPRE model. The <1 1 0> extension is realized by paired <1 1 2> zigzag growth on parallel twinning planes, leading to alternative disappearance and creation of 141° re-entrants. This growth manner ensures Si crystals to expose only their low-energy {1 1 1} planes to the melt. For the Sr-modification case, substantial changes appear in eutectic Si morphology, attributable to the restricted TPRE growth and the impurity induced twinning (IIT) growth. The first enhances lateral growth by forming new twins with parallel twinning planes, while the second leads to isotropic growth by forming differently oriented twins. Heat treatment brings about refinement of both eutectic phases. The refinement of the α-Al occurs concomitantly with the fragmentation and spheroidization of Si and is mainly related to the fracture of the Si crystals due to their limited capacity to accommodate the giant thermal expansion of the α-Al and the diffusion of Al atoms to the cracks during the heat treatment. The Si fracture generates “capillarity” force that activates the diffusion of Al atoms to the gap of the crack. Due to the substitutional feature of Al diffusion, the migration of vacancies toward the interior of the α-Al is induced when Al moves to the gaps, thus the voids of the Si fracture are transferred to the α-Al. In this way, the crystals of α-Al are distorted and defected. The produced crystal defects, in turn, initiate recovery and even recrystallization of the α-Al, resulting in grain refinement. The α-Al phase in the directionally solidified Al-12.7Si-0.04Sr alloy, displays a strong <1 0 0> fiber texture in the solidification direction. Giant <1 0 0> α-Al grains are mainly formed in the outer circle region of the cylindrical specimen due to the favorable heat evacuation directions available for the three <1 0 0> directions. After heat treatment, the texture intensity of the α-Al phase decreases due to the recovery and recrystallization, but the texture type does not change. For the eutectic Si phase in the as-cast alloy, there are two main fiber texture components, <1 0 0> and <1 1 0> in the DS direction, accompanied by two weak components, <2 2 1> and <1 1 3> in the same direction. The <1 0 0> and <1 1 0> components are from Si crystals located in the outer circle and center regions of the cylindrical specimen. The <2 2 1> and the <1 1 3> components are from multiple twins of the <1 1 0> and <1 0 0> oriented crystals. The weak intensities of these two components are related to their minor volume fraction. Once heat treated, the twinned parts with minor volume fractions enlarge at the expense of their twin related matrix, thus the <1 1 0> component is weakened and accompanied by the intensification of the components from the twins. The disappearance of the <1 1 3> component and the appearance of the <1 1 5> component are due to crystallographic rotation of Si crystals during their fragmentation
Hecht, Matthew David. "Effects of Heat Treatments and Compositional Modification on Carbide Network and Matrix Microstructure in Ultrahigh Carbon Steels." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1023.
Full textZamani, Mohammadreza. "Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature." Licentiate thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Material och tillverkning – Gjutning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-26805.
Full textLiu, Jing. "Mechanisms of lifetime improvement in Thermal Barrier Coatings with Hf and/or Y modification of CMSX-4 superalloy substrates." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3423.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr PhD
Anyango, Joseph Ochieng. "Physico-chemical modification of kafirin microstructures for application as biomaterials." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/29708.
Full textThesis (PhD)--University of Pretoria, 2012.
Food Science
unrestricted
Valko, N., S. Anufric, A. Ivanov, and S. Vasiliev. "Laser Modification of the Microstructure of Zn-Co Electroplating Alloys." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42658.
Full textDíez, Escudero Anna. "Tuning the biological performance of calcium phosphates through microstructural and chemical modifications." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/620730.
Full textL'os és el teixit més trasplantats desprès de la sang. L'organització Mundial de la Salut ha posat de relleu l'increment de les malalties musculoesquelètiques, les quals esdevindran la quarta causa mundial de discapacitat en el següents anys. Malgrat la capacitat natural de l'ós per autoregenerar-se, els defectes ossis de grans dimensions necessiten l'ajuda de materials per restaurar-se completament. Actualment, l'ús d'empelts naturals és l'alternativa més emprada clínicament. Tot i això, els autoempelts comporten certes limitacions que requereixen ser adreçades per tal de fer front a les elevades demandes d'una població mundial amb un grau d'envelliment creixent. Els empelts basats en fosfats càlcics (CaPs) són coneguts des de la dècada del 1970 i són uns excel·lents candidats per a la regeneració òssia donada la seva composició, similar a la fase mineral de l'os, que consisteix en aproximadament un 70% d'hidroxiapatita (HA). Els CaPs, en particular l'HA, posseeixen unes propietats intrínseques excepcionals com ara la biocompatibilitat, bioactivitat o la capacitat de suportar el creixement de nou os. Malgrat la seva semblança amb l'os, l'HA és massa estable químicament, i un cop implantada es degrada molt lentament. L'empelt ossi sintètic idealment s'hauria d'integrar en el cicle de remodelació òssia, el que requereix d'un balanç entre la seva reabsorció i la progressiva substitució per os nou. Aquesta capacitat es pot modular mitjançant propietats inherents del material o per mitjà de la combinació de substrats amb molècules capaces d'orquestrar adequadament les respostes de les diverses cèl·lules implicades en la restauració o regeneració òssia. La present tesis cerca explorar, per una banda, la possibilitat de modular les propietats físico-químiques dels CaPs per tal de millorar la seva degradació, així com investigar el potencial de funcionalitzar els CaPs amb heparina, amb la finalitat de millorar les interaccions biològiques a les diferents etapes de la restauració òssia, tant durant la primera etapa inflamatòria, com durant la resorció i el creixement d'os nou. Concretament, la primera part de la present tesi explora la manera en què la modificació de propietats com la porositat, la superfície específica, la microestructura o la composició dels CaPs pot ser emprada per regular la degradació d'aquests materials en una solució acídica similar a l'emprada pels osteoclasts durant la resorció òssia. La interrelació de totes aquestes propietats emmascara de vegades la importància relativa de les propietats texturals, molt lligades a les composicionals, dificultant la predicció dels nivells de degradació dels materials depenent de cada propietat. Per tal de mimetitzar encara més la composició de l'os, s'estudiarà també diferents estratègies per incorporar ions carbonat en l'estructura cristal·lina de l'HA. El segon bloc de la tesi explora la funcionalització dels CaPs amb heparina, un tipus de glicosaminoglicà altament sulfonat present en la matriu extracel·lular de l'os. L'afinitat de l'heparina per captar factors de creixement fan d'aquesta molècula un candidat excel·lent per capturar factors de creixement endògens capaços de regular la resposta cel·lular. Així doncs, partint de les propietats anti-inflamatòries de l'heparina, i de la seva implicació en els processos d'osteogènesi i osteoclastogènesi s'ha formulat la hipòtesi de que aquesta biomolècula podria contribuir a millorar les prestacions dels empelts ossis sintètics. Amb aquest objectiu, s'ha posat a punt un procés d'heparinització de CaPs i s'ha avaluat el seu efecte sobre la resposta de cèl·lules humanes del sistema immune, cèl·lules osteogèniques i osteoclàstiques, per tal d'escatir les possibles sinèrgies de tots dos sistemes, l'immune i l'ossi en la regeneració.
Books on the topic "Microstructural modification"
NATO, Advanced Research Workshop on Atomic and Nanometer-Scale Modification of Materials Fundamentals and Applications (1992 Ventura Calif ). Atomic and nanometer-scale modification of materials, fundamentals and applications. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textRoberts, George, George Krauss, and Richard Kennedy. Tool Steels. 5th ed. ASM International, 1998. http://dx.doi.org/10.31399/asm.tb.ts5.9781627083584.
Full textMichler, Goerg H. Nano- and Micromechanics of Polymers: Structure Modification and Improvement of Properties. Hanser Publications, 2012.
Find full textBook chapters on the topic "Microstructural modification"
Zuo, L., Yu Dong Zhang, Zhuo Chao Hu, H. I. Faraoun, X. Zhao, and Claude Esling. "Microstructural Modification of Metallic Materials by Electromagnetic Processing and the Theoretical Interpretation." In Advanced Materials and Processing IV, 123–26. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-466-9.123.
Full textBennett, Kathleen, Elli Tindall, Samuel R. Wagstaff, and Kenzo Takahashi. "A Reduction in Hot Cracking via Microstructural Modification in DC Cast Billets." In Light Metals 2019, 999–1005. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_122.
Full textOsório, Wislei Riuper, Célia Marina A. Freire, and Amauri Garcia. "Microstructural Solidification Parameters of a Zn–4Al Alloy Affecting Mechanical and Corrosion Properties." In Surface Modification Technologies XVIII: Proceedings of the Eighteenth International Conference on Surface Modification Technologies Held in Dijon, France November 15-17, 2004: v. 18, 189–93. 18th ed. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003423874-47.
Full textOloyede, Olamilekan, Robert F. Cochrane, and Andrew M. Mullis. "Phase Transformation, Microstructural Evolution and Property Modification in Rapidly Solidified Grey Cast Iron." In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 719–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51493-2_69.
Full textLiu, Y., Y. Zhuge, and W. Duan. "Reusing Alum Sludge as Cement Replacement to Develop Eco-Friendly Concrete Products." In Lecture Notes in Civil Engineering, 75–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_10.
Full textBoldyrev, Nikita A., Yuriy I. Yurasov, Lidia A. Shilkina, Alexander V. Nazarenko, and Larisa A. Reznichenko. "Influence of Mn2O3 Modification on the Structural, Microstructural, Dielectric, and Relaxation Characteristics of the (1 − x)BiFeO3–xPbTiO3 Ceramics." In Springer Proceedings in Physics, 83–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19894-7_7.
Full textMandal, Sumantra, P. V. Sivaprasad, and V. Subramanya Sarma. "Microstructural Modification in a 15Cr-15Ni-2.2 Mo-Ti Modified Austenitic Stainless Steel through Twin Induced Grain Boundary Engineering." In Ceramic Transactions Series, 313–21. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470444214.ch33.
Full textSamanta, Avik, Hrishikesh Das, David Garcia, Robert J. Seffens, Timothy J. Roosendaal, Anthony Guzman, Glenn J. Grant, and Saumyadeep Jana. "Microstructural Modification of a High-Pressure Die-Cast A380 Alloy Through Friction Stir Processing and Its Effect on Mechanical Properties." In Light Metals 2022, 766–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92529-1_101.
Full textGrum, Janez. "Residual Stresses and Microstructural Modifications." In Surface Integrity in Machining, 67–126. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-874-2_3.
Full textBao, Shenxu. "Modification of Mineral Surfaces and Microstructures." In Adsorption at Natural Minerals/Water Interfaces, 93–143. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54451-5_3.
Full textConference papers on the topic "Microstructural modification"
Zhang, Shuo, Xiaolin Wei, Wenbin Yu, Zheng Lian, and Huaizhi Zhao. "Microstructural Characterization of Zinc Alloy ZA27 with Modification and Heat Treatments." In 5th International Conference on Information Engineering for Mechanics and Materials. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icimm-15.2015.53.
Full textWu, Fu-Chiao, Tsai-Bau Wu, Horng-Long Cheng, Wei-Yang Chou, and Fu-Ching Tang. "Microstructural modification of polycarbazole-based polymeric solar cells by thermal annealing." In 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). IEEE, 2014. http://dx.doi.org/10.1109/am-fpd.2014.6867183.
Full textYu, Benhai, Deheng Shi, Qiguang Zheng, and Peixiang Lu. "Microstructural modification of lithium niobate crystal induced by femtosecond laser ablation." In International Symposium on Photoelectronic Detection and Imaging: Technology and Applications 2007, edited by Liwei Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.791237.
Full textAhmaniemi, S., J. Tuominen, M. Vippola, P. Vuoristo, T. Mäntylä, F. Cernuschi, C. Gualco, A. Bonadei, and R. Di Maggio. "Characterization of Modified Thick Thermal Barrier Coatings." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p1477.
Full textZou, Jia-Hua, Zhi-Chen Zhang, and Shu-Quan Sun. "Enhanced Plasticity of Bulk MetalLic Glass Alloys (BMGs) by Internal Microstructural Modification." In 2011 Second International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2011. http://dx.doi.org/10.1109/icdma.2011.127.
Full textLiu, Jun, Zhencheng Ren, Chi Ma, Yalin Dong, and Chang Ye. "Ultrasonic Nano-Crystal Surface Modification Assisted Gas Nitriding of Ti6Al4V Alloy." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2847.
Full textMontavon, G., and C. Coddet. "Modification of Ceramic Thermal Spray Deposit Microstructure Implementing Laser Treatment." In ITSC2001, edited by Christopher C. Berndt, Khiam A. Khor, and Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p1195.
Full textKim, J. H., B. G. Seong, J. H. Ahn, and K. H. Baik. "Nozzle Modification for Property Improvement of Arc Spray-formed Steel Tools." In ITSC2006, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima, and J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p1217.
Full textMANOHARAN, NITHINKUMAR, and SUHASINI GURURAJA. "EFFECT OF CONTROLLED LOCAL MICROSTRUCTURAL MODIFICATION OF GLASS FIBER EPOXY COMPOSITES ON PROGRESSIVE DAMAGE PROPAGATION UNDER TENSILE LOADING." In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36440.
Full textRobbins, Joshua, and Pavel M. Chaplya. "Modeling of Nonlinear Material Behavior in Microstructurally Engineered Ferroelectric Ceramics." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43706.
Full textReports on the topic "Microstructural modification"
Noell, Philip, Philip Noell, Philip Noell, Philip Noell, Jeffrey Rodelas, Jeffrey Rodelas, Zahra Ghanbari, Zahra Ghanbari, Christopher Martin Laursen, and Christopher Martin Laursen. Microstructural Modification and Healing of Additively Manufactured Parts by Electropulsing. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1570883.
Full textStubbins, James, Brent Heuser, Peter Hosemann, and Xiang Liu. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434640.
Full text