Academic literature on the topic 'MICROSTRIP LIVES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MICROSTRIP LIVES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MICROSTRIP LIVES"
Sai Geethika, Sunkavalli, Etyala Kethan, Pilli Rishika, and Machunoori Mounica. "Design of Microstrip Rectangular 8x1 Patch Array Antenna for WiMAX Application." E3S Web of Conferences 391 (2023): 01100. http://dx.doi.org/10.1051/e3sconf/202339101100.
Full textChristina, G. "A Review on Novel Microstrip Patch Antenna Designs and Feeding Techniques." IRO Journal on Sustainable Wireless Systems 4, no. 2 (July 25, 2022): 110–20. http://dx.doi.org/10.36548/jsws.2022.2.005.
Full textChen, Ja-Hao, Chen-Yang Cheng, Chuan-Min Chien, Chumpol Yuangyai, Ting-Hua Chen, and Shuo-Tsung Chen. "Multiple Performance Optimization for Microstrip Patch Antenna Improvement." Sensors 23, no. 9 (April 26, 2023): 4278. http://dx.doi.org/10.3390/s23094278.
Full textSingh, Arun Kumar, Arun Kumar, Samarendra Nath Sur, Rabindranath Bera, and Bansibadan Maji. "Design and implementation of microstrip array antenna for intelligent transportation systems application." Frequenz 75, no. 7-8 (June 1, 2021): 267–73. http://dx.doi.org/10.1515/freq-2020-0162.
Full textGhazali, Abu Nasar, Mohd Sazid, and Srikanta Pal. "A dual notched band UWB-BPF based on microstrip-to-short circuited CPW transition." International Journal of Microwave and Wireless Technologies 10, no. 7 (May 21, 2018): 794–800. http://dx.doi.org/10.1017/s1759078718000594.
Full textLa, Dong-Sheng, Xin Guan, Shuai-Ming Chen, Yu-Ying Li, and Jing-Wei Guo. "Wideband Band-Pass Filter Design Using Coupled Line Cross-Shaped Resonator." Electronics 9, no. 12 (December 17, 2020): 2173. http://dx.doi.org/10.3390/electronics9122173.
Full textLin, Shu-Dong, Shi Pu, Chen Wang, and Hai-Yang Ren. "Compact Design of Annular-Microstrip-Fed mmW Antenna Arrays." Sensors 21, no. 11 (May 26, 2021): 3695. http://dx.doi.org/10.3390/s21113695.
Full textYang, Hong, Zhe Yu Chen, and Kun Yi Lv. "Analysis of Dispersion Characteristic of Microstrip Lines on Ferrite and Silicon Structures with Spectral-Domain Method." Applied Mechanics and Materials 130-134 (October 2011): 1244–49. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.1244.
Full textKnyazev N. S., Malkin A. I., and Chechetkin V. A. "Losses measurement method for transmission lines at mmWave." Technical Physics Letters 48, no. 3 (2022): 34. http://dx.doi.org/10.21883/tpl.2022.03.52880.18981.
Full textVo, Hung T., and Frank G. Shi. "New Analytical Model for the Dielectric Loss of Microstrip Lines on Multilayer Dielectric Substrates: Effect of Conductor-Dielectric Interphase." Journal of Microelectronics and Electronic Packaging 3, no. 2 (April 1, 2006): 61–66. http://dx.doi.org/10.4071/1551-4897-3.2.61.
Full textDissertations / Theses on the topic "MICROSTRIP LIVES"
Jones, Mark Loyd. "Spatial sampling of microwave frequency electrical signals using photoconductive switches on a microstrip transmission line." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15619.
Full textSimpson, John P. "Radiation from microstrip transmission lines." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/5435.
Full textDumbell, Keith David. "Theoretical and experimental investigation of shield effects in microstrip." Thesis, University of Bath, 1989. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257187.
Full textTang, Guanghua. "High temperature thin film superconductors and microstrip spiral delay lines." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-01242009-063221/.
Full textApaydin, Nil. "Novel Implementations of Coupled Microstrip Lines on Magnetic Substrates." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373897365.
Full textOzkal, Piroglu Sefika. "Analysis Of Coupled Lines In Microwave Printed Circuit Elements." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12609047/index.pdf.
Full texts functions. The Green&rsquo
s functions are in general Sommerfeld-type integrals which are computationally expensive. To improve the efficiency of the technique, Green&rsquo
s functions are approximated by their closed-forms. Microstrip lines are excited by arbitrarily located current sources and are terminated by complex loads at both ends. Current distributions over microstrip lines are represented by rooftop basis functions. At first step, the current distribution over a single microstrip line is calculated. Next, the calculation of the current distributions over coupled microstrip lines is performed. The technique is then, applied to directional couplers. Using the current distributions obtained by the analysis, the scattering parameters of the structures are evaluated by using Prony&rsquo
s method. The results are compared with the ones gathered by using simulation software tools, CNL/2&trade
and Agilent Advanced Design System&trade
(ADS).
Tan, Song. "Design of compact and dual-band microwave microstrip balun /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20TAN.
Full textSotomayor, Polar Manuel Gustavo. "Analysis of Microstrip Lines on Substrates Composed of Several Dielectric Layers under the Application of the Discrete Mode Matching." Thesis, University of Gävle, University of Gävle, University of Gävle, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-3106.
Full textMicrostrip structures became very attractive with the development of cost-effective dielectric materials. Among several techniques suitable to the analysis of such structures, the discrete mode matching method (DMM) is a full-wave approach that allows a fast solution to Helmholz equation. Combined with a full-wave equivalent circuit, the DMM allows fast and accurate analysis of microstrips lines on multilayered substrates.
The knowledge of properties like dispersion and electromagnetic fields is essential in the implementation of such transmission lines. For this objective a MATLAB computer code was developed based on the discrete mode matching method (DMM) to perform this analysis.
The principal parameter for the analysis is the utilization of different dielectric profiles with the aim of a reduction in the dispersion in comparison with one-layer cylindrical microstrip line, showing a reduction of almost 50%. The analysis also includes current density distribution and electromagnetic fields representation. Finally, the data is compared with Ansoft HFSS to validate the results.
The German Aerospace Center has rights over the thesis work
Jin, Won Tae. "Circuit models for a millimeter-wave suspended-microstrip line discontinuity." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA240906.
Full textThesis Advisor(s): Atwater, Harry A. Second Reader: Janaswamy, Rama. "September 1990." Description based on title screen as viewed on December 29, 2009. DTIC Identifier(s): Suspended striplines, microstrip lines, equivalent circuits, program listings, theses. Author(s) subject terms: Suspended-microstrip line, step discontinuity, equivalent circuit model, step-change. Includes bibliographical references (p. 60). Also available in print.
Wong, Man Fai. "A novel compact microstrip type composite right/left handed transmission line (CRLH TL) and its applications /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ee-b23750467f.pdf.
Full text"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Master of Philosophy." Includes bibliographical references.
Books on the topic "MICROSTRIP LIVES"
Gardiol, Fred E. Microstrip circuits. New York: Wiley, 1994.
Find full textGarg, Ramesh. Microstrip lines and slotlines. 3rd ed. Boston: Artech House, 2013.
Find full textSchrader, David H. Microstrip circuit analysis. Upper Saddle River, N.J: Prentice Hall PTR, 1995.
Find full textTrinogga, L. A. Practical microstrip circuit design. New York: E. Horwood, 1991.
Find full textPractical microstrip design and applications. Boston, MA: Artech House, 2005.
Find full textA, Zakarevičius R., ed. Microwave engineering using microstrip circuits. New York: Prentice Hall, 1990.
Find full textEdwards, T. C. Foundations for microstrip circuit design. 2nd ed. Chichester, West Sussex, England: Wiley, 1991.
Find full textBhartia, P. Millimeter-wave microstrip and printed circuit antennas. Boston: Artech House, 1991.
Find full textHong, Jia-Sheng. Microstrip filters for RF/microwave applications. 2nd ed. Hoboken, N.J: Wiley, 2011.
Find full textB, Steer M., and Edwards T. C, eds. Foundations of interconnect and microstrip design. 3rd ed. Chichester: John Wiley, 2000.
Find full textBook chapters on the topic "MICROSTRIP LIVES"
Awang, Zaiki. "Microstrip and Related Transmission Lines." In Microwave Systems Design, 101–46. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-24-6_3.
Full textEdwards, T. C., and M. B. Steer. "Parallel-Coupled Lines and Directional Couplers." In Foundations of Interconnect and Microstrip Design, 269–314. West Sussex, England: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118894514.ch8.
Full textCarin, Lawrence. "Leaky-Waves on Multiconductor Microstrip Transmission Lines." In Directions in Electromagnetic Wave Modeling, 319–27. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3677-6_30.
Full textOhshima, Shigetoshi, Katsuro Okuyama, Kunio Sawaya, and Keisuke Noguchi. "Surface Resistance of the BSCCO Microstrip Lines." In Advances in Superconductivity IV, 965–68. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-68195-3_211.
Full textCulbertson, J. C., H. S. Newman, U. Strom, J. M. Pond, D. B. Chrisey, J. S. Horwitz, and S. A. Wolf. "Light Detection Using High-T c Microstrip Lines." In Superconducting Devices and Their Applications, 180–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_30.
Full textKiang, Jean-Fu, Hsiao-Lun Hsu, and Yuan-Shun Cheng. "Microstrip Lines with a Periodically Corrugated Ground Plane." In Novel Technologies for Microwave and Millimeter — Wave Applications, 231–55. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_11.
Full textKanade, Tarun Kumar, Alok Rastogi, Sunil Mishra, and Vijay D. Chaudhari. "Analysis of Rectangular Microstrip Array Antenna Fed Through Microstrip Lines with Change in Width." In Advances in Intelligent Systems and Computing, 487–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2008-9_46.
Full textHessel, A. "Broadbanding Guide Lines of Strip-Element Microstrip Phased Arrays." In Directions for the Next Generation of MMIC Devices and Systems, 131–44. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_16.
Full textPan, Guangwen, and Jilin Tan. "Full-Wave Analysis of Radiation Effect of Microstrip Transmission Lines." In Modeling and Simulation of High Speed VLSI Interconnects, 77–85. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2718-3_8.
Full textXiao, Zhen, Dan Zhang, and Weijie Xu. "Electromagnetic Line-Parameters Extracted from Microstrip Lines with Step Discontinuities." In Lecture Notes in Electrical Engineering, 25–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4110-4_4.
Full textConference papers on the topic "MICROSTRIP LIVES"
Roskos, Hartmut, Martin C. Nuss, Keith W. Goossen, David W. Kisker, Ben Tell, Alice E. White, Ken T. Short, Dale C. Jacobson, and John M. Poate. "Propagation of 100 GHz bandwidth electrical pulses on a microstrip line with buried silicide groundplane." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.wb4.
Full textLu, H. J., Y. X. Guo, K. Faeyz, C. K. Cheng, and J. Wei. "Liquid Crystal Polymer (LCP) for Characterization of Millimer-Wave Transmission Lines and Bandpass Filters." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10573.
Full textLyons, W. Gregory. "High-Frequency Analog Signal Processing With High-Temperature Superconductors*." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.fa2.
Full textWu, Xin, Omar M. Ramahi, Gary A. Brist, and Donald P. Cullen. "Surface Finish Effects on High-Speed Interconnects." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35332.
Full textDmitry Zelenchuk, Aleksey P. Shitvov, Alex G. Schuchinsky, and Torbjorn Olsson. "Passive intermodulation on microstrip lines." In 2007 European Microwave Conference. IEEE, 2007. http://dx.doi.org/10.1109/eumc.2007.4405210.
Full textSergienko, Pavlo, Irina Golubeva, and Yuriy Prokopenko. "Loss in tunable microstrip lines." In 2014 IEEE 34th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2014. http://dx.doi.org/10.1109/elnano.2014.6873972.
Full textAksun, M. I., and H. Morkoc. "Characteristics of Shielded Microstrip Lines on GaAs-Si at Millimeter-Wave Frequencies." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/peo.1987.we7.
Full textMeng-Yu Hsiao, Yu-Wei Chang, and Ching-Wen Hsue. "Chirped signal generation using microstrip lines." In 2015 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE, 2015. http://dx.doi.org/10.1109/iwem.2015.7365070.
Full textAzar, C. M., and R. F. Harrington. "Dispersion characteristics of open microstrip lines." In IEEE Antennas and Propagation Society International Symposium 1992 Digest. IEEE, 1992. http://dx.doi.org/10.1109/aps.1992.221861.
Full textKhalaj-Amirhosseini, Mohammad, and Gholamali Rezai-rad. "Circular Symmetric Coupled Microstrip Transmission Lines." In 2008 IEEE International RF and Microwave Conference (RFM). IEEE, 2008. http://dx.doi.org/10.1109/rfm.2008.4897362.
Full textReports on the topic "MICROSTRIP LIVES"
Johnk, Robert T. Crosstalk between microstrip transmission lines. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5015.
Full textHill, D. A. Radiated emissions and immunity of microstrip transmission lines :. Gaithersburg, MD: National Bureau of Standards, 1995. http://dx.doi.org/10.6028/nist.tn.1377.
Full textElsherbeni, Atef Z., Vicente Rodriguez-Pereyra, and Charles E. Smith. The Effect of an Air Gap on the Coupling Between Two Planar Microstrip Lines. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300530.
Full text