Academic literature on the topic 'Microsomal prostaglandin E2 synthase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microsomal prostaglandin E2 synthase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Microsomal prostaglandin E2 synthase"

1

Psarra, Anastasia, Aikaterini Nikolaou, Maroula G. Kokotou, Dimitris Limnios, and George Kokotos. "Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review." Expert Opinion on Therapeutic Patents 27, no. 9 (June 26, 2017): 1047–59. http://dx.doi.org/10.1080/13543776.2017.1344218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Timmers, L., G. Pasterkamp, and D. P. V. de Kleijn. "Microsomal Prostaglandin E2 Synthase: A Safer Target than Cyclooxygenases?" Molecular Interventions 7, no. 4 (August 1, 2007): 195–99. http://dx.doi.org/10.1124/mi.7.4.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Tom Y. H., Hélène Juteau, Yves Ducharme, Richard W. Friesen, Sébastien Guiral, Lynn Dufresne, Hugo Poirier, et al. "Biarylimidazoles as inhibitors of microsomal prostaglandin E2 synthase-1." Bioorganic & Medicinal Chemistry Letters 20, no. 23 (December 2010): 6978–82. http://dx.doi.org/10.1016/j.bmcl.2010.09.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goedken, Eric R., Andrew I. Gagnon, Gary T. Overmeyer, Junjian Liu, Richard A. Petrillo, Andrew F. Burchat, and Medha J. Tomlinson. "HTRF-Based Assay for Microsomal Prostaglandin E2 Synthase-1 Activity." Journal of Biomolecular Screening 13, no. 7 (July 1, 2008): 619–25. http://dx.doi.org/10.1177/1087057108321145.

Full text
Abstract:
Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E2 (PGE2) from the endoperoxide prostaglandin H 2 (PGH2). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH 2 substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE2 produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition. ( Journal of Biomolecular Screening 2008:619-625)
APA, Harvard, Vancouver, ISO, and other styles
5

Koeberle, Andreas, Hinnak Northoff, and Oliver Werz. "Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1." Molecular Cancer Therapeutics 8, no. 8 (August 2009): 2348–55. http://dx.doi.org/10.1158/1535-7163.mct-09-0290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koeberle, Andreas, Ulf Siemoneit, Ulrike Bühring, Hinnak Northoff, Stefan Laufer, Wolfgang Albrecht, and Oliver Werz. "Licofelone Suppresses Prostaglandin E2 Formation by Interference with the Inducible Microsomal Prostaglandin E2 Synthase-1." Journal of Pharmacology and Experimental Therapeutics 326, no. 3 (June 11, 2008): 975–82. http://dx.doi.org/10.1124/jpet.108.139444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Jiping, Denise G. Joplin, Janet V. Cross, and Dennis J. Templeton. "Sulforaphane Inhibits Prostaglandin E2 Synthesis by Suppressing Microsomal Prostaglandin E Synthase 1." PLoS ONE 7, no. 11 (November 16, 2012): e49744. http://dx.doi.org/10.1371/journal.pone.0049744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koeberle, A., F. Pollastro, H. Northoff, and O. Werz. "Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E2 synthase-1." British Journal of Pharmacology 156, no. 6 (March 4, 2009): 952–61. http://dx.doi.org/10.1111/j.1476-5381.2009.00070.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ikeda-Matsuo, Yuri, Yuji Ikegaya, Norio Matsuki, Satoshi Uematsu, Shizuo Akira, and Yasuharu Sasaki. "Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production." Journal of Neurochemistry 94, no. 6 (September 2005): 1546–58. http://dx.doi.org/10.1111/j.1471-4159.2005.03302.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andersson, Susanne, Mattias Norman, Rolf Olsson, Robin Smith, Gang Liu, and Johan Nord. "High-Precision, Room Temperature Screening Assay for Inhibitors of Microsomal Prostaglandin E Synthase-1." Journal of Biomolecular Screening 17, no. 10 (August 15, 2012): 1372–78. http://dx.doi.org/10.1177/1087057112456424.

Full text
Abstract:
Microsomal prostaglandin E synthase-1 (mPGES-1) is the major enzyme catalyzing the isomerization of prostaglandin (PG) H2 to PGE2. Here we report the development of a robust and practical automated assay in a 384-well format for room temperature screening of mPGES-1 inhibitors with high precision and low reagent consumption. The assay should enable precise structure-activity relationship development. It uses acetonitrile as solvent for PGH2, FeCl2/citrate as stop reagent, and a short reaction time. Combined with high-precision liquid transfer and extensive mixing after addition of reactants, these properties let the assay reach Z′ > 0.7 and high reproducibility of inhibitor IC50 values. Thorough investigation of the quality of mixing in all liquid transfer steps proved crucial for reaching high-precision performance. Abbreviations: mPGES-1 (microsomal prostaglandin E synthase-1); FRET (fluorescence resonance energy transfer); HTRF (homogeneous time-resolved fluorescence); PGH2 (prostaglandin H2); PGE2 (prostaglandin E2); SAR (structure-activity relationship); COX-2 (cyclooxygenase-2); GSH (glutathione); ALP (automated labware positioner)
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Microsomal prostaglandin E2 synthase"

1

Seegers, Julia [Verfasser], and Oliver [Akademischer Betreuer] Werz. "Identification and Characterization of natural products as dual inhibitors of microsomal Prostaglandin E2 Synthase-1 and 5- Lipoxygenase / Julia Seegers ; Betreuer: Oliver Werz." Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1196877912/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adedoyin, Oreoluwa O. "MECHANISMS OF CYCLOOXYGENASE-2-DEPENDENT HUMAN AORTIC SMOOTH MUSCLE CELL PHENOTYPIC MODULATION." UKnowledge, 2014. http://uknowledge.uky.edu/pharmacy_etds/34.

Full text
Abstract:
Abdominal aortic aneurysm (AAA) is a disease of the aorta characterized by pathological remodeling and progressive weakening of the vessel resulting in the increased risk of rupture and sudden death. In a mouse model of the disease induced by chronic Angiotensin II (AngII) infusion, progression of AAAs is associated with reduced differentiation of smooth muscle cells (SMCs) at the site of lesion development. In the mouse model, the effectiveness of cyclooxygenase-2 (COX-2) inhibition for attenuating AAA progression is associated with maintenance of a differentiated SMC phenotype. However, the safety of COX-2 inhibitors is currently in question due to the increased risk of adverse cardiovascular events. Thus, it is crucial to identify mediators downstream of COX-2 that may provide new targets for treatment of this disease. Recent studies in humans and mouse models have suggested that the microsomal prostaglandin E synthase (mPGES-1) enzyme, which acts downstream of COX-2, may also be involved in the pathogenesis of the disease. We hypothesized that increased prostaglandin E2 (PGE2) synthesis resulting from the induction of both COX-2 and mPGES-1 may result in reduced differentiation of SMCs, and that disruption of this pathway would preserve the differentiated phenotype. To test this hypothesis, human aortic smooth muscle cells (hASMCs) were utilized to examine the effects of a variety of agents involved in AAA development and the COX-2 pathway. My findings suggest that one of the effects of exposing hASMCs to AngII involves a specific induction of mPGES-1 expression. Furthermore, although different COX-2-derived products may have opposing effects, mPGES-1-derived PGE2 may be the primary prostanoid synthesized by SMCs which functions to attenuate differentiation. Therefore, mPGES-1 inhibition may provide inhibition of PGE2 that is more specific than COX-2 inhibitor treatment and may serve as a therapeutic target for attenuating AAA progression by maintaining a differentiated SMC phenotype.
APA, Harvard, Vancouver, ISO, and other styles
3

Kiezel-Tsugunova, Magdalena. "Elucidating the metabolism of n-3 polyunsaturated fatty acids and formation of bioactive lipid mediators in human skin." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/elucidating-the-metabolism-of-n3-polyunsaturated-fatty-acids-and-formation-of-bioactive-lipid-mediators-in-human-skin(773abedd-c726-4dab-890a-694a96b1c074).html.

Full text
Abstract:
Human skin has distinct lipid metabolism and production of bioactive lipid mediators that can be modulated by nutritional supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFA), of which eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids exert anti-inflammatory effects. The aims of this project were to gain better understanding of their individual mechanisms in human epidermis and dermis. HaCaT keratinocytes, 46BR.1N fibroblasts, primary human epidermal keratinocytes and dermal fibroblasts were treated with EPA or DHA for 72h and then sham-irradiated or exposed to 15 mJ/cm2 ultraviolet radiation (UVR). Viability was measured by the MTT assay. The expression of cyclooxygenase-2 (COX-2), microsomal prostaglandin synthase-1 (mPGES-1) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) proteins was explored by western blotting. Human skin explants (n=4 donors) were cultured for 3 or 6 days and supplemented with EPA, DHA or vehicle. Culture media were collected to evaluate tissue damage and PUFA cytotoxicity (lactate dehydrogenase assay). Epidermal and dermal lipid profiles were assessed by gas chromatography and liquid chromatography coupled to tandem mass spectrometry. Primary keratinocytes were treated with fatty acids and various lipid mediators for 48h. Their effect was determined by the scratch assay and transepithelial electrical resistance. UVR upregulated COX-2 in HaCaT and primary epidermal keratinocytes, but did not affect mPGES-1 and 15-PGDH protein expression. UVR upregulated COX-2 and mPGES-1 in 46BR.1N fibroblasts but had no effect on 15-PGDH expression. The same UVR dose did not alter the expression of COX-2, mPGES-1 and 15-PGDH in primary dermal fibroblasts. Only EPA attenuated COX-2 expression in HaCaT and primary keratinocytes and either EPA or DHA had any effect in 46BR.1N and primary fibroblasts. Skin explants showed initial post-biopsy tissue damage. EPA and DHA supplementation augmented cellular levels of the corresponding fatty acids in both epidermis and dermis to a different extent. Increased uptake of DHA in the dermis was accompanied by reduced arachidonic acid levels. EPA treatment stimulated the production of PGE3 and various HEPE in epidermis, while DHA treatment caused high levels of HDHA species in dermis. N-3 PUFA and their derivatives delayed wound healing, cell migration and epidermal barrier permeability, while n-6 PUFA lipids showed the opposite effect. Overall, these findings suggest that EPA and DHA differently affect skin cells and skin, with EPA preference in epidermis and DHA in the dermis. These results highlight the importance of differential skin responses that could be important in skin health and disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Gosset, Marjolaine. "Régulation de la prostaglandine E synthétase microsomale de type 1 (mPGES-1), enzyme terminale de synthèse de la Prostaglandine E2 (PGE2) par le stress mécanique et la visfatine dans le cartilage articulaire." Paris 6, 2007. http://www.theses.fr/2007PA066213.

Full text
Abstract:
L’homéostasie du cartilage articulaire est contrôlée par les contraintes mécaniques ainsi que par les médiateurs solubles libérés par les tissus articulaires. Ce tissu est dégradé au cours de l’arthrose, pathologie dégénérative et inflammatoire chronique de l’articulation. Une forte libération de médiateurs pro-inflammatoires tels que la prostaglandine E2 (PGE2) est observée. Ce travail étudie la régulation de l’enzyme terminale inductible de synthèse de la PGE2, la prostaglandine E synthétase microsomale de type 1 (mPGES-1), dans le cartilage articulaire. Nous montrons que le stress mécanique et l’adipokine visfatine stimulent l’expression de la mPGES-1 et de la synthèse consécutive de PGE2 par les chondrocytes. Ces recherches permettent de mieux comprendre les mécanismes à l’origine de la forte synthèse de PGE2 au cours de l’arthrose. La mPGES-1 représente une nouvelle cible thérapeutique potentielle: son inhibition pourrait retarder la dégradation du cartilage lors de l’arthrose.
APA, Harvard, Vancouver, ISO, and other styles
5

Thorén, Staffan. "Characterization of human glutathione-dependent microsomal prostaglandin E synthase-1 /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-637-5/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meynier, de Salinelles Véronique. "Rôles de l'interleukine-1beta et de la 15-déoxy-delta12,14-prostaglandine J2 dans les chondrocytes : régulation de la prostaglandine E2 synthétase microsomale-1 et perspectives thérapeutiques." Paris 6, 2003. http://www.theses.fr/2003PA066221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koeberle, Andreas. "Identification and characterization of microsomal prostaglandin E₂ synthase-1 inhibitors = Identifizierung und Charakterisierung von Hemmstoffen der mikrosomalen Prostaglandin E₂ Synthase-1 /." Tübingen, 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000278394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karlsson, Sofia. "Studies of prostaglandin E2 formationin human monocytes." Licentiate thesis, Karlstads universitet, Avdelningen för kemi och biomedicinsk vetenskap, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-4638.

Full text
Abstract:
Prostaglandin (PG) E2 is an eicosanoid derived from the polyunsaturated twenty carbon fatty acid arachidonic acid (AA). PGE2 has physiological as well as pathophysiological functions and is known to be a key mediator of inflammatory responses. Formation of PGE2 is dependent upon the activities of three specific enzymes involved in the AA cascade; phospholipase A2 (PLA2), cyclooxygenase (COX) and PGE synthase (PGEs). Although the research within this field has been intense for decades, the regulatory mechanisms concerning the PGE2 synthesising enzymes are not completely established. PGE2 was investigated in human monocytes with or without lipopolysaccharide (LPS) pre-treatment followed by stimulation with calcium ionophore, opsonised zymosan or phorbol myristate acetate (PMA). Cytosolic PLA2a (cPLA2a) was shown to be pivotal for the mobilization of AA and subsequent formation of PGE2. Although COX-1 was constitutively expressed, monocytes required expression of COX-2 protein in order to convert the mobilized AA into PGH2. The conversion of PGH2 to the final product PGE2 was to a large extent due to the action of microsomal PGEs-1 (mPGEs-1). In addition, experiments with inhibitors of extracellular signal regulated kinase and p38 activation, indicated that phosphorylation of cPLA2α was markedly advantageous for the formation of PGE2. Ellagic acid, a natural polyphenolic compound found in fruits and nuts, was shown to inhibit stimuli induced release of PGE2 in human monocytes. The effect of ellagic acid was not due to a direct effect on the activities of the enzymes but rather to inhibition of the LPS-induced protein expression of COX-2, mPGEs-1 and cPLA2a.
APA, Harvard, Vancouver, ISO, and other styles
9

Pecchi, Emilie. "Mécanismes moléculaires de l’anorexie inflammatoire : rôle de la microsomal Prostaglandin E Synthase (mPGES)-1." Aix-Marseille 3, 2008. http://www.theses.fr/2008AIX30018.

Full text
Abstract:
Lors de la réaction de phase aiguë induite par une infection ou une inflammation, le système nerveux central coordonne un ensemble de modifications physiologiques (anorexie, fièvre, …). Au cours de ce travail, nous avons analysé le rôle d’une enzyme terminale de synthèse de la prostaglandine E2, la mPGES-1, dans cet état pathologique. Nous montrons que cette enzyme, inductible en contexte inflammatoire, est nécessaire à l’activation des structures centrales et à la mise en place de l’anorexie lors d’une inflammation aiguë. De plus, son invalidation abolit les symptômes du syndrome anorexie-cachexie (anorexie chronique et perte de poids) induit par la croissance d’une tumeur sous-cutanée. Ainsi, nos résultats indiquent que l’inhibition de la mPGES-1 pourrait représenter une stratégie thérapeutique pour le traitement des symptômes de la réaction de phase aiguë et pour le traitement du syndrome anorexie-cachexie observé dans de nombreuses pathologies chroniques à composante inflammatoire
Infection or inflammation trigger a set of physiological changes (anorexia, fever,. . . ) known as the acute phase reaction. During this work, we analyzed the possible involvement of a terminal prostaglandin E2 synthase, the mPGES-1, in this pathological state. We show that this enzyme, inducible in inflammatory conditions, is required for central nervous system activation and for anorexia during acute inflammation. Moreover its invalidation abolished the symptoms of the anorexia-cachexia syndrome (chronic anorexia and dramatic weight loss) induced by subcutaneous tumour growth. Altogether, our results indicate that mPGES-1 inhibition could represent a therapeutic strategy to treat acute phase reaction symptoms and anorexia-cachexia syndrome observed in numerous chronic diseases with inflammatory component
APA, Harvard, Vancouver, ISO, and other styles
10

Kowalewski, Mariusz Paweł. "Untersuchungen zur Rolle des Prostaglandin Systems in der Regulation der Corpus Luteum Funktion der Hündin durch Erfassung der Expression von Cyclooxygenase 1 und -2 (Cox1,-2), Prostaglandin F2alpha Synthase (PGFS), Prostaglandin E2 Synthase (PGES) und Prostaglandin F2alpha Rezeptor (PGFR)." Lollar : Rosenbaum, 2007. http://geb.uni-giessen.de/geb/volltexte/2007/4476/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Microsomal prostaglandin E2 synthase"

1

Jakobsson, Per-Johan, Staffan Thorén, Ralf Morgenstern, and Bengt Samuelsson. "Characterization of Microsomal, Glutathione Dependent Prostaglandin E Synthase." In Advances in Experimental Medicine and Biology, 287–91. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0193-0_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minghetti, Luisa, Alessia Nicolini, Elisabetta Polazzi, Christophe Créminon, Jacques Maclouf, and Giulio Levi. "Prostaglandin E2 Downregulates Inducible Nitric Oxide Synthase Expression in Microglia by Increasing cAMP Levels." In Advances in Experimental Medicine and Biology, 181–84. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1810-9_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pettersson, Pär L., Staffan Thorén, and Per‐Johan Jakobsson. "Human Microsomal Prostaglandin E Synthase 1: A Member of the MAPEG Protein Superfamily." In Methods in Enzymology, 147–61. Elsevier, 2005. http://dx.doi.org/10.1016/s0076-6879(05)01009-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Microsomal prostaglandin E2 synthase"

1

Kock, Anna, Agnes Rasmuson, Marina Korotkova, Helena Idborg, John Inge Johnsen, Per-Johan Jakobsson, and Per Kogner. "Abstract 2746: Microsomal prostaglandin E2 synthase-1 may provide a novel specific therapeutic target in neuroblastoma." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kock, Anna, Agnes Rasmuson, Helena Idborg, John Inge Johnsen, and Per Kogner. "Abstract 1420: Microsomal prostaglandin E2 synthase 1 (mPGES-1) is expressed in neuroblastoma and may represent a novel target for therapy." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Woolbright, Benjamin Leeland, Jordan Barney, Van Schloegel Schloegel, Erika Abbott, and John Arthur Taylor. "Abstract 3867: Microsomal prostaglandin E synthase-1: A therapeutic target in bladder cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kock, Anna, Karin Larsson, Raouf Joan, Marina Korotkova, John-Inge Johnsen, Per-Johan Jakobsson, and Per Kogner. "Abstract 1632: Microsomal prostaglandin E synthase 1: a novel therapeutic target of neuroblastoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Woolbright, Benjamin Leeland, Jordan Barney, Van Schloegel Schloegel, Erika Abbott, and John Arthur Taylor. "Abstract 3867: Microsomal prostaglandin E synthase-1: A therapeutic target in bladder cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gunji, Yoko, Tadashi Sato, Nobuhiro Kanaji, Amy Nelson, Jun Ikari, Shunichiro Iwasawa, JooHun Park, et al. "Microsomal Prostaglandin E Synthase-1 Is Induced In Lung Fibroblasts By IL-1b And Turns Over." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Afifah, Solichatul, Atikah Amalia, and Siti Imroatul Maslikah. "In silico study on flavonoids from red betel as microsomal Prostaglandin E Synthase-1 (mPGES-1) inhibitors in rheumatoid arthritis." In INTERNATIONAL CONFERENCE ON BIOLOGY AND APPLIED SCIENCE (ICOBAS). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Lei, Magdalena Ornatowska, Hongmei Cao, Rui Yu, Guiqing Zhao, Ruxana T. Sadikot, and John W. Christman. "Lipopolysaccharide (LPS)-induced Expression Of Prostaglandin E Synthase-1 (PGES-1) Mediates The Late Phase Prostaglandin (PG) E2 Production In Mouse Bone Marrow-derived Macrophages (BMDM)." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robertson-Plouch, C., JR Stille, P. Liu, S. Malcolm, D. Brown, M. Warner, and MJ Fisher. "SAT0502 A randomized, placebo-controlled, proof-of-concept efficacy study of a microsomal prostaglandin e synthase-1 (MPGES1) inhibitor and a prostaglandin E receptor (EP4) antagonist in the treatment of canine osteoarthritis pain." In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.3113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Afifah, Solichatul, Betty Lukiati, and Siti Imroatul Maslikah. "The potentials of red betel (Piper crocatum Ruiz & Pav) terpenoid compounds as Microsomal Prostaglandin E Synthase-1 (mPGES-1) enzyme inhibitor of rheumatoid arthritis through virtual screening." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography