Academic literature on the topic 'Microscopy and tomography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microscopy and tomography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microscopy and tomography"
van der Krift, Theo, Ulrike Ziese, Willie Geerts, and Bram Koster. "Computer-Controlled Transmission Electron Microscopy: Automated Tomography." Microscopy and Microanalysis 7, S2 (August 2001): 968–69. http://dx.doi.org/10.1017/s1431927600030919.
Full textWang, Xinkun, Kedi Xiong, Xin Jin, and Sihua Yang. "Tomography-assisted Doppler photoacoustic microscopy: proof of concept." Chinese Optics Letters 18, no. 10 (2020): 101702. http://dx.doi.org/10.3788/col202018.101702.
Full textButz, T., D. Lehmann, T. Reinert, D. Spemann, and J. Vogt. "Ion Microscopy and Tomography." Acta Physica Polonica A 100, no. 5 (November 2001): 603–13. http://dx.doi.org/10.12693/aphyspola.100.603.
Full textWang, Lihong V. "Photoacoustic Tomography and Microscopy." Optics and Photonics News 19, no. 7 (July 1, 2008): 36. http://dx.doi.org/10.1364/opn.19.7.000036.
Full textXiu, Peng, Xin Zhou, Cuifang Kuang, Yingke Xu, and Xu Liu. "Controllable tomography phase microscopy." Optics and Lasers in Engineering 66 (March 2015): 301–6. http://dx.doi.org/10.1016/j.optlaseng.2014.10.001.
Full textBorg, Thomas K., James A. Stewart, and Michael A. Sutton. "Imaging the Cardiovascular System: Seeing Is Believing." Microscopy and Microanalysis 11, no. 3 (May 12, 2005): 189–99. http://dx.doi.org/10.1017/s1431927605050439.
Full textCarlson, David B., Jeff Gelb, Vadim Palshin, and James E. Evans. "Laboratory-Based Cryogenic Soft X-Ray Tomography with Correlative Cryo-Light and Electron Microscopy." Microscopy and Microanalysis 19, no. 1 (January 18, 2013): 22–29. http://dx.doi.org/10.1017/s1431927612013827.
Full textSmallwood, R., P. Metherall, D. Hose, M. Delves, H. Pollock, A. Hammiche, C. Hodges, V. Mathot, and P. Willcocks. "Tomographic imaging and scanning thermal microscopy: thermal impedance tomography." Thermochimica Acta 385, no. 1-2 (March 2002): 19–32. http://dx.doi.org/10.1016/s0040-6031(01)00705-5.
Full textKo, Dae-Sik. "Multiple-Transducer Scheme for Scanning Tomographic Acoustic Microscopy Using Transverse Waves." Ultrasonic Imaging 19, no. 4 (October 1997): 294–304. http://dx.doi.org/10.1177/016173469701900405.
Full textQin, Wei, Qian Chen, and Lei Xi. "A handheld microscope integrating photoacoustic microscopy and optical coherence tomography." Biomedical Optics Express 9, no. 5 (April 16, 2018): 2205. http://dx.doi.org/10.1364/boe.9.002205.
Full textDissertations / Theses on the topic "Microscopy and tomography"
Godavarthi, Charankumar. "Optical diffraction tomography microscopy : towards 3D isotropic super-resolution." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4337/document.
Full textThis PhD thesis is devoted to the three-dimensional isotropic resolution improvement using optical tomographic diffraction microscopy (TDM), an emerging optical microscope technique. The principle is to illuminate the sample successively with various angles of coherent light, collect the complex (amplitude and phase) diffracted field and reconstruct the sample 3D permittivity map through an inversion algorithm. A single TDM measurement was shown to combine several popular microscopy techniques such as bright-field microscope, dark-field microscope, phase-contrast microscope, confocal microscope, 2D and 3D synthetic aperture microscopes. All rely on scalar and linear approximations that assume a linear link between the object and the field diffracted by it, which limit their applicability to retrieve the object quantitatively. Thanks to a rigorous numerical inversion of the TDM diffracted field data which takes into account the polarization of the field and the multiple scattering process, we were able to reconstruct the 3D permittivity map of the object with a λ/4 transverse resolution. A further improvement to λ/10 transverse resolution was achieved by providing a priori information about the sample to the non-linear inversion algorithm. Lastly, the poor axial resolution in microscopes is due to the fundamental asymmetry of illumination and detection. To overcome this, a mirror-assisted tomography configuration was implemented, and has demonstrated a sub-λ/2 axial resolution capability. As a result, TDM can be seen as a powerful tool to reconstruct objects in three-dimensions with their optical material properties at resolution far superior to conventional microscopes
Bertilson, Michael. "Laboratory soft x-ray microscopy and tomography." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-29950.
Full textQC 20110221
Balakishan, Harishankar. "Nanoscale Tomography Based in Electrostatic Force Microscopy." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671789.
Full textLa capacidad de caracterizar los elementos debajo de la superficie ha sido una necesidad imperiosa en los campos de la ciencia de los materiales, la tecnología de polímeros, la biología y las ciencias médicas. La microscopía de sonda de barrido (SPM por sus siglas en inglés) es una técnica de microscopía que permite exploran la superficie de una muestra a nano escala utilizando una sonda nanométrica, donde los datos adquiridos se utilizan para reconstruir las propiedades físicas de las muestras en resolución nanométrica (por ejemplo, topografía). Dado que las mediciones se pueden realizar sin contacto, los diferentes tipos de SPM se han convertido en candidatos óptimos para el estudio de propiedades sin necesidad de destruir la muestra. El SPM también posee la ventaja relativa de ser no invasivo, no destructivo, requiere una preparación de muestra relativamente sencilla, puede extenderse a cualquier ambiente (inerte, vacío ambiental), y también medirse en aire, agua o cualquier medio biológico. Entre ellos, la microscopía de fuerza electrostática, se ha utilizado con éxito en investigaciones del subsuelo para estudiar las modificaciones de composición debajo de las capas orgánicas, obtener imágenes debajo de las capas orgánicas, obtener imágenes de moléculas de agua confinada en canales nanométricos, imágenes de nanotubos de carbono, redes de grafeno y nanopartículas dentro de polímeros. Los nanocompuestos, que consisten en nanoestructuras en gran parte de su matriz para mejorar la eficiencia de la matriz, han sido una de las aplicaciones de la ciencia de materiales incorporadas con éxito en las últimas dos décadas. Las nanopartículas de plata tienen especialmente un aluvión de aplicaciones en su haber que van desde aplicaciones de células solares, pantallas táctiles, LED hasta dispositivos portátiles flexibles. Comprender las características del subsuelo o la tomografía de estos nanocompuestos podría ayudarnos a comprender sus propiedades, interpretándolas en función de su dependencia paramétrica, lo que luego nos ayudaría a ajustarlos para otras aplicaciones. En esta tesis, se han realizado estudios computacionales individuales de nano cables enterrados en una matriz dieléctrica para observar los efectos de varios parámetros que influyen en las imágenes del subsuelo. La resolución espacial tiene una importancia primordial, ya que se estudia su comportamiento de dos nano cables paralelos junto con dos nano cables superpuestos uno encima del otro. Además, el análisis de nanocompuestos de nano cables de plata se han investigado con la ayuda de la microscopía de barrido volumen de fuerza dieléctrica, una técnica propuesta recientemente con el EFM. La mayor parte de la matriz está compuesta de gelatina que puede ofrecer un rango de permitividades dependiendo del grado de hidratación, por ejemplo, aquí εr ~ 5 a εr ~ 14. Esta muestra se analiza experimentalmente, se obtienen imágenes y la profundidad de los nano cables en la matriz se mapean con el análisis teórico. Esta tesis nos proporciona nueva información y técnicas avanzadas a nivel tomográfico que ayudaran a la realización de imágenes de nanoestructuras de nuevos nanomateriales para aplicaciones en Salud y Electrónica.
Niehle, Michael. "Electron tomography and microscopy on semiconductor heterostructures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17607.
Full textElectron tomography exhibits a very poor spread in the research field of epitaxial semiconductor heterostructures in spite of the ongoing miniaturization and increasing three-dimensional (3D) character of nano-structured devices. This necessitates a tomographic approach at the nanometre scale in order to characterize and understand the relation between structure and physical properties of respective material systems. The present work demonstrates the rigorous application of electron tomography to an III-Sb based laser and to an (In,Ga)N/GaN nanocolumn heterostructure. A specific target preparation using a versatile FIB-SEM dual-beam microscope is emphasized as indispensable. The purposeful orientation of the specimen during preparation and the careful selection of an imaging mode in the scanning-/transmission electron microscope (S/TEM) are regarded in great detail. The comprehensive spatial microstructure characterization of the antimonide based heterostructure follows the dimensionality of crystal defects. The facetting and position of a pore (3D defect) which is unexpected in the MBE grown GaSb layer, is determined. The interplay of the initially grown AlSb islands on Si, the formation of a misfit dislocation network at the heterostructure interface (2D defect) and the presence of threading dislocations is investigated by the correlation of tomographic and complementary S/TEM results. The spatial arrangement of dislocations (1D defects) penetrating the whole stack of antimonide layers is revealed by electron tomography. The interaction of these line defects with anti-phase boundaries and with other dislocations is exclusively observed in the 3D result. The insertion of (In,Ga)N into oblique GaN nanocolumns is uniquely accessed by electron tomography. The amount of incorporated indium and the (In,Ga)N layer thickness is shown to vary on the different facets of the GaN core.
Ford, Bridget K. "Computed tomography based spectral imaging for fluorescence microscopy." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/280122.
Full textSwinford, Richard William. "An AFM-SIMS Nano Tomography Acquisition System." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3485.
Full textSelin, Mårten. "3D X-ray microscopy: image formation, tomography and instrumentation." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184095.
Full textTomografi i mjukröntgenmikroskopi är en ny teknik för att få ut kvantitativ strukturell 3D information om celler. Dess styrka jämfört med andra tekniker är att den kan avbilda intakta celler i deras nära naturliga tillstånd med ett par 10 nm upplösning, utan omfattande preparering. Dock är metoderna för att rekonstruera 3D-data beroende av algoritmer som antar projektionsdata, vilket bilderna i allmänhet inte är på grund av avbildningsystemens begränsade skärpedjup. För att få ut den fulla potentialen av tomografi i röntgenmikroskopi behövs en ökad förståelse för avbildningsprocessen. Denna avhandling behandlar zonplatte-baserad röntgenmikroskopi för biologisk avbildning och den nödvändiga teorin för en numerisk implementering av en avbildningsmodell i 3D. En ny rekonstruktionsmetod föreslås som förbättrar upplösningen i rekonstruktionen för ett tomografiskt avbildat objekt. Detta visas i simuleringar och experiment. Slutligen omfattar denna avhandling arbete på Stockholms mjukröntgenmikroskop, inklusive en uppgradering av röntgenkällan som ger oöverträffad ljusstyrka för ett kompakt system. Denna uppgradering möjliggör högkvalitativ avbildning av celler i deras nästan naturliga tillstånd med endast 10 sekunders exponering.
QC 20160324
Sharp, Joanne. "Electron tomography of defects." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228638.
Full textMazlin, Viacheslav. "Tomographie optique cohérente pour l’imagerie in vivo de la cornée." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET024.
Full textThis PhD project aimed to create an optical system for non-contact cellular resolution imaging of the human cornea in vivo. To achieve that, the contact ex vivo time-domain full-field optical coherence tomography (FFOCT) system was transformed into a non-contact in vivo imaging device and was for the first time applied to the human eye. FFOCT acquired images from the entire human cornea, limbus, sclera and tear film, revealing cells and nerves, which could be quantified over a millimetric field-of-view, beyond the capability of confocal microscopy and conventional optical coherence tomography (OCT). Blood flow and tear film dynamics could be directly followed and quantified. Furthermore, FFOCT was combined with a conventional OCT to perform real-time axial eye tracking and defocusing correction. The latter enabled real-time FFOCT imaging and display, which opens a path for future device implementation in clinical research and practice. Bench to bedside transfer of FFOCT is further stimulated by several solutions proposed in the manuscript, aiming to reduce the instrumentational complexity. Finally, a related FFOCT device was applied to imaging in vivo human retina, revealing the photoreceptors
Xiao, Juan. "Development of electron tomography on liquid suspensions using environmental scanning electron microscopy." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI050/document.
Full textESEM (Environmental Scanning Electron Microscopy) allows the observation of liquids under specific conditions of pressure and temperature. When working in the transmission mode, i.e. in STEM (Scanning Transmission Electron Microscopy), nano-objects can even be analyzed inside the liquid (“wet-STEM” mode). Moreover, in situ evaporation of water can be performed to study the materials evolution from the wet to the dry state. This work aims at developing electron tomography on liquid suspensions using STEM-in-ESEM, to obtain the 3D structure of nano-objects dispersed in a liquid. In a first part, Monte Carlo simulations and 2D wet-STEM experimental images are combined to study the contrast. Two kinds of liquid nano-materials are chosen as the sample: spherical gold particles (diameter around 40 nm) in suspension in water; latex SBA-PMMA suspension, a copolymer derived from styrene and metacrylic acid esters in aqueous solution, 3% PMMA shell included as steric surfactant. The comparison between simulated and experimental results helps to determine how water can affect the contrast of hydrated nano-materials. Tomography experiments are then performed on dry PU-carbon nanotubes nanocomposites using a previously developed home-made tomography device, and the volume is well reconstructed. When performing tomography on latex suspension, limitations are found on the temperature control of samples. We propose an optimization of the device with new observations conditions to better control water evaporation and condensation of liquid samples. Afterwards, a full 3D analysis on SBA-PMMA latex from dilute suspension to very concentrated one is performed, and a further study is presented in presence of a surfactant. The encouraging reconstruction results are used to model the particles arrangement. This shows the potentialities of wet-STEM tomography for the characterization of both solid and liquid nano-materials
Books on the topic "Microscopy and tomography"
Miller, M. K. Atom probe tomography: Analysis at the atomic level. New York: Kluwer Academic / Plenum Publishers, 2000.
Find full textLarson, David J. Local electrode atom probe tomography: A user's guide. New York: Springer, 2013.
Find full textAtom Probe Tomography: Analysis at the Atomic Level. Boston, MA: Springer US, 2000.
Find full textInternational, Meeting on Scanning Laser Ophthalmoscopy Tomography and Microscopy (7th 1999). Seventh International Meeting on Scanning Laser Ophthalmoscopy, Tomography, and Microscopy. Boston: Kluwer Academic Publishers, 2001.
Find full textStock, Stuart R. MicroComputed tomography: Methodology and applications. Boca Raton: CRC Press, 2009.
Find full text1940-, Frank J., ed. Electron tomography: Methods for three-dimensional visualization of structures in the cell. 2nd ed. New York: Springer, 2006.
Find full textAdam, Kruk. Tomografia elektronowa i jej zastosowanie w obrazowaniu i metrologii mikrostruktury materiałów: Electron tomography and its application in imaging and metrology of the microstructure of materials. Kraków: Wydawnictwa AGH, 2012.
Find full textInternational Conference on Optical Instruments and Technology (2009 Shanghai, China). 2009 International Conference on Optical Instruments and Technology: Optical trapping and microscopic imaging : 19-22 October 2009, Shanghai, China. Edited by Yuan Xiaocong, Zhongguo yi qi yi biao xue hui, Zhongguo guang xue xue hui, SPIE (Society), and Zhongguo yi qi yi biao xue hui. Optoelectronic-Mechanic Technology and System Integration Chapter. Bellingham, Wash: SPIE, 2009.
Find full textK, Miller M., Oak Ridge National Laboratory, and U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering Technology., eds. Atom probe tomography characterization of the solute distributions in a neutron-irradiated and annealed pressure vessel steel weld. Washington, DC: U.S. Nuclear Regulatory Commission, 2000.
Find full textL, Ackerman Jerome, Ellingson W. A, and Materials Research Society, eds. Advanced tomographic imaging methods for the analysis of materials: Symposium held November 28-30, 1990, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1991.
Find full textBook chapters on the topic "Microscopy and tomography"
Russ, John C. "Tomography." In Computer-Assisted Microscopy, 419–37. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0563-7_13.
Full textWeyland, Matthew, and Paul Midgley. "Electron Tomography." In Transmission Electron Microscopy, 343–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26651-0_12.
Full textAguirre, Aaron D., Chao Zhou, Hsiang-Chieh Lee, Osman O. Ahsen, and James G. Fujimoto. "Optical Coherence Microscopy." In Optical Coherence Tomography, 865–911. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_29.
Full textAguirre, A. D., and J. G. Fujimoto. "Optical Coherence Microscopy." In Optical Coherence Tomography, 505–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_17.
Full textMiller, M. K. "Field Ion Microscopy." In Atom Probe Tomography, 45–83. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4281-0_3.
Full textLin, Angela S. P., Stuart R. Stock, and Robert E. Guldberg. "Microcomputed Tomography." In Springer Handbook of Microscopy, 1205–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_24.
Full textMidgley, Paul A., and Matthew Weyland. "STEM Tomography." In Scanning Transmission Electron Microscopy, 353–92. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7200-2_8.
Full textCarazo, J. M., C. O. Sorzano, E. Rietzel, R. Schröder, and R. Marabini. "Discrete Tomography in Electron Microscopy." In Discrete Tomography, 405–16. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1568-4_18.
Full textKelly, Thomas F. "Atom-Probe Tomography." In Springer Handbook of Microscopy, 715–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_15.
Full textPlitzko, Jürgen, and Wolfgang P. Baumeister. "Cryo-Electron Tomography." In Springer Handbook of Microscopy, 189–228. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00069-1_4.
Full textConference papers on the topic "Microscopy and tomography"
Colon, Jorge, and Hyungsik Lim. "Adaptive Field Microscopy: Shaping Field for 3D Laser Scanning Microscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ots.2016.oth4c.8.
Full textBell, Kevan, Saad Abbasi, Nicholas Pellegrino, and Parsin Haji Reza. "Hyperspectral Photoacoustic Remote Sensing Microscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.sw4d.4.
Full textZhang, Hao F. "Optical Ultrasound Detection in Photoacoustic Microscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ots.2016.oth1c.1.
Full textLiang, Yizhi, Chao Liu, long jin, and Lidai Wang. "Single-Cell Optical-Resolution Photoacoustic Microscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ots.2018.ow4d.7.
Full textWang, Peng. "3D Electron Ptychographical Tomography." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1146.
Full textZhang, Wei, Yanxiu Li, Van Phuc Nguyen, Guan Xu, Yannis M. Paulus, and Xueding Wang. "Integrated photoacoustic microscopy, optical coherence tomography and fluorescence microscopy imaging of rabbit ocular neovascularization in vivo." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.sth4d.3.
Full textSaghi, Zineb. "Workflow for correlative energy-dispersive X-ray tomography and atom probe tomography." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.327.
Full textStockton, Patrick A., Keith A. Wernsing, Jeff J. Field, Jeff Squier, and Randy A. Bartels. "Single Pixel Fourier Computed Tomography." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/ntm.2019.nw2c.2.
Full textBergoënd, Isabelle, Cristian Arfire, Yann Cotte, and Christian Depeursinge. "Complex field imaging for diffraction tomography." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ntm.2011.ntuc7.
Full textDrobek, Dominik. "Correlative 3D characterization of hierarchical zeolite structures linking nano X-ray tomography and 360° electron tomography." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.859.
Full textReports on the topic "Microscopy and tomography"
Edmondson, Philip D. An On-Axis Tomography Holder for Correlative Electron and Atom Probe Microscopy. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1479802.
Full textKnipling, Keith, Fred Meisenkothen, and Eric B. Steel. Proceedings of the International Conference on Atom-Probe Tomography and Microscopy (APT&M 2018). National Institute of Standards and Technology, December 2019. http://dx.doi.org/10.6028/nist.sp.2100-03.
Full textRiccardella, Scott, and Jason Van Velsor. PR-335-15370-R01 Evaluation of NDE Methodologies for In-Ditch Characterization of ERW Seam Anomalies. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2019. http://dx.doi.org/10.55274/r0011596.
Full textRiccardella, Scott, and Jason Van Velsor. PR-335-173844-R01 NDE Crack Depth Sizing Performance Validation for Multiple UT Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2020. http://dx.doi.org/10.55274/r0011676.
Full textAlexander, Chris, and Atul Ganpatye. PR-652-203802-R01 Computed Tomography for the Development of Standards for Anomaly Detection-Characterization. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2022. http://dx.doi.org/10.55274/r0012246.
Full textElbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Full textJackson, J. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/883616.
Full textKing, W. E., G. H. Campbell, D. L. Haupt, J. H. Kinney, R. A. Riddle, and W. L. Wien. Mechanism of ductile rupture in the Al/sapphire system elucidated using x-ray tomographic microscopy. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/231570.
Full textWendelberger, James. Registration of Laser Confocal Microscope (LCM), Wide Area Measurement System (WAMS), and X-Ray Tomographic (XRAY) Images. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821351.
Full textSparks, Paul, Jesse Sherburn, William Heard, and Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41963.
Full text