Academic literature on the topic 'Microsatellite disorders'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microsatellite disorders.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microsatellite disorders"
Richard, Guy-Franck. "The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions." Cells 10, no. 5 (April 26, 2021): 1019. http://dx.doi.org/10.3390/cells10051019.
Full textAvvaru, Akshay Kumar, Deepak Sharma, Archana Verma, Rakesh K. Mishra, and Divya Tej Sowpati. "MSDB: a comprehensive, annotated database of microsatellites." Nucleic Acids Research 48, no. D1 (October 10, 2019): D155—D159. http://dx.doi.org/10.1093/nar/gkz886.
Full textRanum, Laura P. W., and John W. Day. "Dominantly inherited, non-coding microsatellite expansion disorders." Current Opinion in Genetics & Development 12, no. 3 (June 2002): 266–71. http://dx.doi.org/10.1016/s0959-437x(02)00297-6.
Full textVolpe, G., B. Gamberi, C. Pastore, A. Roetto, M. Pautasso, G. Parvis, C. Camaschella, U. Mazza, G. Saglio, and G. Gaidano. "Analysis of microsatellite instability in chronic lymphoproliferative disorders." Annals of Hematology 72, no. 2 (February 1996): 67–71. http://dx.doi.org/10.1007/bf00641310.
Full textVolpe, G., B. Gamberi, C. Pastore, A. Roetto, M. Pautasso, G. Parvis, C. Camaschella, U. Mazza, G. Saglio, and G. Gaidano. "Analysis of microsatellite instability in chronic lymphoproliferative disorders." Annals of Hematology 72, no. 2 (February 1, 1996): 67–71. http://dx.doi.org/10.1007/s002770050139.
Full textPoggi, Lucie, Lisa Emmenegger, Stéphane Descorps-Declère, Bruno Dumas, and Guy-Franck Richard. "Differential efficacies of Cas nucleases on microsatellites involved in human disorders and associated off-target mutations." Nucleic Acids Research 49, no. 14 (July 7, 2021): 8120–34. http://dx.doi.org/10.1093/nar/gkab569.
Full textShoab Mansuri, Mohmmad, Mala Singh, and Munira Jariwala. "Investigating the Association of Poly (ADP-Ribose) Polymerase-1 (PARP-1) and Nuclear Factor-κB (NF-κB) Polymorphisms with Vitiligo Susceptibility." International Journal of Research and Review 9, no. 10 (October 17, 2022): 277–85. http://dx.doi.org/10.52403/ijrr.20221032.
Full textEcheverria, Gloria V., and Thomas A. Cooper. "RNA-binding proteins in microsatellite expansion disorders: Mediators of RNA toxicity." Brain Research 1462 (June 2012): 100–111. http://dx.doi.org/10.1016/j.brainres.2012.02.030.
Full textHayward, Bruce E., Peter J. Steinbach, and Karen Usdin. "A point mutation in the nuclease domain of MLH3 eliminates repeat expansions in a mouse stem cell model of the Fragile X-related disorders." Nucleic Acids Research 48, no. 14 (July 3, 2020): 7856–63. http://dx.doi.org/10.1093/nar/gkaa573.
Full textGrespi, Valentina, Cecilia Caprera, Claudia Ricciolini, Ilaria Bicchi, Gianmarco Muzi, Matteo Corsi, Stefano Ascani, Angelo Luigi Vescovi, and Maurizio Gelati. "Human neural stem cells drug product: Microsatellite instability analysis." PLOS ONE 17, no. 8 (August 30, 2022): e0273679. http://dx.doi.org/10.1371/journal.pone.0273679.
Full textDissertations / Theses on the topic "Microsatellite disorders"
Poggi, Lucie. "Gene editing approaches of microsatellite disorders : shortening expanded repeats." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS412.
Full textMicrosatellite disorders are a specific class of human diseases that are due to the expansion of repeated sequences above pathological thresholds. These disorders have varying symptoms and pathogenic mechanisms, caused by the expanded repeat. No cure exists for any of these dramatic conditions. This thesis is investigating new gene editing approaches to remove pathological expansions in the human genome. In a first part, a yeast-based screen was constructed to identify potent CRISPR-associated nucleases that can cut these microsatellites. The second part focuses on myotonic dystrophy type 1 (DM1), which is due to and expanded CTG repeat tract located at the 3’UTR of the DMKP gene. A nuclease, TALENCTG was designed to induce a double strand break into the CTG repeats. It was previously shown to be active in yeast cells, inducing contractions of CTG repeats from a DM1 patient integrated into the yeast genome. The TALEN was tested in DM1 patient cells. The nuclease was found to trigger some contraction events in patient cells. In vivo experiments were carried out in a mouse model of myotonic dystrophy type 1 containing a human genomic fragment from a patient and 1000 CTG. Intramuscular injections of recombinant AAV encoding the TALENCTG revealed that the nuclease is toxic and/or immunogenic in muscle cells in the tested experimental conditions. Finally, the reporter assay integrated in yeast to screen nucleases was transposed in HEK293FS cell line. The integrated cassette contains a CTG expansion from a myotonic dystrophy type 1 patient flanked by two halves of GFP genes. This system would enable to find nucleases active in human cells
Vaksman, Zalman. "Somatic microsatellite variability as a measure of DNA stability in cancer and DNA repair disorders." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51174.
Full textPh. D.
Vaysse-Zinkhöfer, Wilhelm. "Mécanismes de réparations d’une cassure double-brin et résection au sein d’un microsatellite humain." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS477.
Full textMicrosatellites are tandem repeats of a motif between one and nine base pairs. These repeats are found ubiquitously in all organisms and are particularly abundant in eukaryotic organisms. All these repeats are capable of forming secondary structures in vitro and possibly in vivo. Some microsatellites are prone to expansion, leading to many neurodegenerative diseases in humans such as myotonic dystrophy type 1 (DM1), the most frequently transmitted neurodegenerative disease. The onset and severity of symptoms are positively correlated with the number of repeats located in the 3'UTR of the DMPK gene. In previous work in the laboratory, a TALE nuclease (TALEN) was developed to introduce a double-strand break into a microsatellite (GTC)n from a DM1 patient. Understanding the mechanisms leading to repeat contraction in yeast is necessary to understand the mechanisms in humans. Thus, experiments were conducted in cells with altered CBD repair systems showing that RAD51, POL32 and DNL4 were not required for CBD repair within microsatellites. Only RAD50 and RAD52 appear to be required, indicating that the cell repairs CBDs in repeated regions by single-strand annealing. The objective of this thesis was to study the role of several genes (MRE11, EXO1, SGS1, DNA2, SAE2, RIF1 and RIF2), involved in the resection and repair of a single CBD within a CTG repeat region, in yeast
Rohilla, Kushal. "Cell-Based Models and RNA Biology for a Genetic Form of Lou Gehrig's Disease." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1784.
Full textBook chapters on the topic "Microsatellite disorders"
Goodwin, Marianne, and Maurice S. Swanson. "RNA-Binding Protein Misregulation in Microsatellite Expansion Disorders." In Systems Biology of RNA Binding Proteins, 353–88. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1221-6_10.
Full textDias, Christel, and Cynthia Gates Goodyer. "Association of a Human Growth Hormone Receptor (HGHR) Gene Microsatellite Polymorphism with Idiopathic Short Stature (ISS)." In CLINICAL/TRANSLATIONAL - Growth Disorders, P1–726—P1–726. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p19.p1-726.
Full textBarcellos, Lisa F., Soren Germer, and William Klitz. "DNA pooling methods for association mapping of complex disease loci." In Molecular Epidemiology, 113–44. Oxford University PressOxford, 2007. http://dx.doi.org/10.1093/oso/9780199638116.003.0005.
Full textConference papers on the topic "Microsatellite disorders"
Charbonneaux, Juliette, and Karine Berthelot Guiet. "Of Seals and Humans. Media and scientific discourses about a caregiving medical device." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003485.
Full text