Academic literature on the topic 'Micropump-based System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Micropump-based System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Micropump-based System"
Khaustov, A. I., G. G. Boyarsky, and K. V. Krotov. "Designing of a Micropump System for Circulatory Support." Journal of the Russian Universities. Radioelectronics 25, no. 5 (November 28, 2022): 104–12. http://dx.doi.org/10.32603/1993-8985-2022-25-5-104-112.
Full textNi, Jun Hui, Bei Zhi Li, and Jian Guo Yang. "A MEMS-Based PDMS Micropump Utilizing Electromagnetic Actuation and Planar In-Contact Check Valves." Advanced Materials Research 139-141 (October 2010): 1574–77. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1574.
Full textJin, Wenzui, Yimin Guan, Qiushi Wang, Peng Huang, Qin Zhou, Kun Wang, and Demeng Liu. "A Smart Active Phase-Change Micropump Based on CMOS-MEMS Technology." Sensors 23, no. 11 (May 30, 2023): 5207. http://dx.doi.org/10.3390/s23115207.
Full textWang, Bao Wei, Xiang Cheng Chua, and Long Tu Li. "A Piezoelectric Micropump Based on MEMS Fabrication." Key Engineering Materials 368-372 (February 2008): 215–17. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.215.
Full textWieczorek, Marcin, Paweł Kościelniak, Paweł Świt, Justyna Paluch, and Joanna Kozak. "Solenoid micropump-based flow system for generalized calibration strategy." Talanta 133 (February 2015): 21–26. http://dx.doi.org/10.1016/j.talanta.2014.04.053.
Full textLeu, Tzong-Shyng, and Ruei-Hung Kao. "Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840027. http://dx.doi.org/10.1142/s0217984918400274.
Full textLiu, Yiqun, Qi Yu, Xiaojin Luo, Le Ye, Li Yang, and Yue Cui. "A Microtube-Based Wearable Closed-Loop Minisystem for Diabetes Management." Research 2022 (October 27, 2022): 1–14. http://dx.doi.org/10.34133/2022/9870637.
Full textChen, He, Xiaodan Miao, Hongguang Lu, Shihai Liu, and Zhuoqing Yang. "High-Efficiency 3D-Printed Three-Chamber Electromagnetic Peristaltic Micropump." Micromachines 14, no. 2 (January 19, 2023): 257. http://dx.doi.org/10.3390/mi14020257.
Full textShoji, Eiichi. "Fabrication of a diaphragm micropump system utilizing the ionomer-based polymer actuator." Sensors and Actuators B: Chemical 237 (December 2016): 660–65. http://dx.doi.org/10.1016/j.snb.2016.06.153.
Full textGallah, Nader, Nizar Habbachi, and Kamel Besbes. "Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump." Microsystem Technologies 23, no. 12 (April 10, 2017): 5781–87. http://dx.doi.org/10.1007/s00542-017-3414-9.
Full textDissertations / Theses on the topic "Micropump-based System"
Van, der Merwe Schalk Willem. "A MEMS based valveless micropump for biomedical applications." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4230.
Full textENGLISH ABSTRACT: The valveless micropump holds great potential for the biomedical community in applications such as drug delivery systems, blood glucose monitoring and many others. It is also a critical component in many a lab-on-a-chip device, which in turn promises to improve our treatment and diagnosis capabilities for diseases such as diabetes, tuberculosis, and HIV/AIDS. The valveless micropump has attracted attention from researchers on the grounds of its simple design, easy manufacturability and sensitive fluid handling characteristics, which are all important in biomedical applications. The pump consists of a pump chamber with a diffuser and nozzle on opposing sides of the pump chamber. The flow into the diffuser and nozzle is induced by an oscillating piezoelectric disc located on top of the pump chamber. The nozzle and diffuser rectify the flow in one direction, due to different pressure loss coefficients. The design process however is complex. In this study, we investigate the characteristics of a diffuser / nozzle based micropump using detailed computational fluid dynamic (CFD) analyses. Significant parameters are derived using the Buckingham-Pi theorem. In part based on this, the respective shapes of the diffuser and of the nozzle of the micropump are selected for numerical investigation. Hence the influence of the selected parameters on the flow rate of the micropump is studied using three-dimensional transient CFD analyses. Velocity profiles from the CFD simulations are also compared to the Jeffery-Hamel solution for flow in a wedge shaped channel. Significant similarities exist between the data and the predicted Jeffery-Hamel velocity profiles near the exit of the diffuser. Three different diffuser geometries were simulated at three frequencies. The flow rate and direction of flow are shown to be highly sensitive to inlet and outlet diffuser shapes, with the absolute flow rate varying by as much as 200% for the geometrical perturbations studied. Entrance losses at both the diffuser inlet and nozzle inlet appear to dominate the flow resistance at extremely laminar flow conditions with the average Reynolds number of Reave ≈ 500.
AFRIKAANSE OPSOMMING: Die kleplosemikropomp hou groot potensiaal in vir die biomediese gemeenskap in toepassings soos medisyne dosering sisteme, bloed glukose monitering en baie ander. Dit is ook ’n kritiese komponent in “lab-on-chip” sisteme, wat beloof om die behandeling en diagnose van siektes soos suikersiekte, tuberkulose enMIV/VIGS te verbeter. Die kleplose mikropomp het tot dusver die aandag van navorsers geniet as gevolg van sy eenvoudige ontwerp, maklike vervaardiging en sensitiewe vloeistof hantering. Hierdie kenmerke is krities inmenige biomediese toepassings. Die pomp bestaan uit ’n pompkamer met ’n diffusor en ’n mondstuk aan teenoorstaande kante van die pompkamer. Vloei in die diffusor en mondstuk in word geinduseer deur ’n ossillerende piëso-elektiese skyf wat bo-op die pompkamer geleë is. Weens verskillende druk verlies koëffisinëte van die diffusor en diemondstuk word die vloei in een rigting gerig. Die ontwerp-proses is egter kompleks. In hierdie studie word die eienskappe van die diffusor /mondstuk ondersoek deur gebruik temaak van gedetailleerde numeriese vloei-dinamiese analises. Belangrike parameters word afgelei deur gebruik te maak van die Buckingham-Pi teorema. Gedeeltelik gebaseer hierop word die onderskeidelike vorms van die diffusor en die mondstuk van die mikropomp geselekteer vir numeriese ondersoek. Gevlolglik word die invloed van die geselekteerde parameters op die vloei tempo van diemikropomp ondersoek deur gebruik temaak van drie-dimensionele tyd afhanklike numeriese vloei-dinamiese analises. Snelheids profiele van hierdie simulasiesword vergelykmet die Jeffrey-Hamel oplossing vir die vloei in ’n wigvormige kanaal. Daar is oorwegende ooreenkomstighede tussen hierdie data en die voorspelde Jeffrey-Hamel snelheids profiele veral by die uitgang van die diffusor. Drie verskillende diffusor vorms is by drie frekwensies gesimuleer. Daar is bewys dat die vloei tempo en vloeirigting baie sensitief is vir inlaat- en uitlaat diffusor vorms en dat die absolute vloei tempo kan varieermet soveel as 200%vir die geometriese versteuringswat ondersoek is. Inlaat verliese by beide die diffusor inlaat en die mondstuk inlaat, blyk om die vloei weerstand te domineer waar die vloei uiters laminêr ismet ’n gemiddelde Reynolds getal van Regem ≈ 500
Jenke, Christoph Werner [Verfasser], Christoph [Akademischer Betreuer] Kutter, Christoph [Gutachter] Kutter, Roland [Gutachter] Zengerle, and Georg [Gutachter] Düsberg. "Performance and reliabiltity of micropump based liquid dosing systems / Christoph Werner Jenke ; Gutachter: Christoph Kutter, Roland Zengerle, Georg Düsberg ; Akademischer Betreuer: Christoph Kutter ; Universität der Bundeswehr München, Fakultät für Elektrotechnik und Informationstechnik." Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2018. http://d-nb.info/1183735677/34.
Full textVinaya, Kumar K. B. "Design, Development and Performance Study of Microneedle & Micropump-based Transdermal Drug Delivery System." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/4092.
Full textConference papers on the topic "Micropump-based System"
Li, Jia-Hao, Wai-Hong Kan, Ling-Sheng Jang, and Yi-Chu Hsu. "A Portable Micropump System Based on Piezoelectric Actuation." In IECON 2007. 33rd Annual Conference of the IEEE Industrial Electronics. IEEE, 2007. http://dx.doi.org/10.1109/iecon.2007.4460045.
Full textJohari, Juliana, and Burhanuddin Yeop Majlis. "MEMS-based piezoelectric micropump for precise liquid handling." In 2012 International Conference on System Engineering and Technology (ICSET). IEEE, 2012. http://dx.doi.org/10.1109/icsengt.2012.6339327.
Full textYang, Lung-Jieh, Tzu-Yuan Lin, and Yu-Cheng Ou. "A Thermopneumatic Valveless Micropump With PDMS-Based Nozzle/Diffuser Structure for Microfluidic System." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52352.
Full textCheng, Yih-Lin, Yu-Shen Shen, and Jiang-Hong Lin. "Manufacture of Propulsion Systems for Micro Underwater Vehicles." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95259.
Full textCesmeci, Sevki, Rubayet Hassan, and Mark Thompson. "A Proof-of-Concept Study of a Magnetorheological Micropump." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96174.
Full textJeong, Su-Young, Jonathan D. Thorud, Deborah V. Pence, and James A. Liburdy. "Performance Characteristics of a Membrane Driven Variable Flow Rate Micro-Pump." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75208.
Full textLaser, Daniel J. "Temporal Modulation of Electroosmotic Micropumps." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13960.
Full textShahinpoor, Mohsen. "Smart Ionic Polymer Conductor Composite Materials as Multifunctional Distributed Nanosensors, Nanoactuators and Artificial Muscles." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79394.
Full textNejat, Amir, Farshad Kowsary, Amin Hasanzadeh, and Saman Ebrahimi. "Investigation of an Unsteady Flow Behavior Through a Valveless Microvalve With Step Expansion Shape." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66310.
Full textRidgeway, Shane, Junho Song, and Li Cao. "A Selectively Anodic Bonded Micropump for Implantable Medical Drug Delivery Systems." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33551.
Full text