Academic literature on the topic 'Microprinting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microprinting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microprinting"
Kowalczyk, Bartlomiej, Mario M. Apodaca, Hideyuki Nakanishi, Stoyan K. Smoukov, and Bartosz A. Grzybowski. "Microprinting: Small 17/2009." Small 5, no. 17 (September 4, 2009): NA. http://dx.doi.org/10.1002/smll.200990086.
Full textZergioti, I., A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos. "Femtosecond laser microprinting of biomaterials." Applied Physics Letters 86, no. 16 (April 18, 2005): 163902. http://dx.doi.org/10.1063/1.1906325.
Full textLin, Yen-Po, Yong Zhang, and Min-Feng Yu. "Parallel Process 3D Metal Microprinting." Advanced Materials Technologies 4, no. 1 (November 12, 2018): 1800393. http://dx.doi.org/10.1002/admt.201800393.
Full textDoherty, Rachel P., Thijs Varkevisser, Margot Teunisse, Jonas Hoecht, Stefania Ketzetzi, Samia Ouhajji, and Daniela J. Kraft. "Catalytically propelled 3D printed colloidal microswimmers." Soft Matter 16, no. 46 (2020): 10463–69. http://dx.doi.org/10.1039/d0sm01320j.
Full textZijie Lin, 林子杰, 徐剑 Jian Xu, and 程亚 Ya Cheng. "Laser assisted 3D metal microprinting (Invited)." Infrared and Laser Engineering 49, no. 12 (2020): 20201079. http://dx.doi.org/10.3788/irla.24_invited-1079new.
Full textZijie Lin, 林子杰, 徐剑 Jian Xu, and 程亚 Ya Cheng. "Laser assisted 3D metal microprinting (Invited)." Infrared and Laser Engineering 49, no. 12 (2020): 20201079. http://dx.doi.org/10.3788/irla20201079.
Full textMayer, Frederik, Daniel Ryklin, Irene Wacker, Ronald Curticean, Martin Čalkovský, Andreas Niemeyer, Zheqin Dong, et al. "3D Two‐Photon Microprinting of Nanoporous Architectures." Advanced Materials 32, no. 32 (June 30, 2020): 2002044. http://dx.doi.org/10.1002/adma.202002044.
Full textTavana, Hossein, and Shuichi Takayama. "Aqueous biphasic microprinting approach to tissue engineering." Biomicrofluidics 5, no. 1 (March 2011): 013404. http://dx.doi.org/10.1063/1.3516658.
Full textSerra, P., M. Duocastella, J. M. Fernández-Pradas, and J. L. Morenza. "Liquids microprinting through laser-induced forward transfer." Applied Surface Science 255, no. 10 (March 2009): 5342–45. http://dx.doi.org/10.1016/j.apsusc.2008.07.200.
Full textVerbitsky, Lior, Nir Waiskopf, Shlomo Magdassi, and Uri Banin. "A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization." Nanoscale 11, no. 23 (2019): 11209–16. http://dx.doi.org/10.1039/c9nr03086g.
Full textDissertations / Theses on the topic "Microprinting"
Scott, Mark Andrew Ph D. Massachusetts Institute of Technology. "Ultra-rapid 2-D and 3-D laser microprinting of proteins." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79248.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 124-135).
When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14 layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs.
by Mark Andrew Scott.
Ph.D.in Electrical and Medical Engineering
Liu, Man-Chi S. M. Massachusetts Institute of Technology. "Rapid 3-D laser microprinting of bioscaffolds and patterning of proteins." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92217.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 68-72).
Tissue engineers have been developing biological substitutes to regenerate or replace damaged tissue. Tissues contain both exquisite microarchitectures and chemical cues to support cell migration, proliferation and differentiation. The majority of tissue engineering strategies use porous scaffolds containing chemical cues for culturing cells. However, these methods are unable to truly recapitulate the complexity of the in-vivo environment, limiting the effective regeneration. Several techniques have been developed to create three-dimensional patterns of proteins and 3-D print the architectures of bio-scaffolds for studying and directing cell development. Scott has developed a rapid 3-D laser microprinting system', which is able to simultaneously print the defined architecture of scaffolds and internal patterns of proteins inside scaffolds with high-speed and high-resolution. The object of this thesis is to further develop the technique of rapid 3-D laser microprinting by researching on the biological activity and functions of printed scaffolds and printed proteins. First, we constructed branched collagen microchannels containing microprinted patterns of P-selectin, a protein involved in leukocyte recruitment from blood vessels. We showed that leukocyte rolling occurred on P-selectin patterned collagen channels. Second, we presented a 3-D printed microvasculature by seeding endothelial cells into a printed collagen scaffold with capillary-like microarchitecture. Next, we performed leukocyte rolling assay within the printed microvasculature by printing the patterns of protein cues to activate the endothelium. Last, we created a 3-D microprinted collagen scaffolds for guiding and homing of cells. Cells were guided by printed P-selectin patterns and trapped in specific locations inside collagen scaffolds. All the work demonstrated that printed protein cues retain their biological activity, and the combination of printed scaffolds and patterned protein cues provides potential application for drug screening assays in biomimetic environments and cell delivery for regenerative medicine. We believe that this rapid printing technology will enable highly engineered therapeutic scaffolds for regenerative medicine applications.
by Man-Chi Liu.
S.M.
Petrak, David. "Automated, Spatio-Temporally Controlled Cell Microprinting with Polymeric Aqueous Biphasic Systems." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1375364313.
Full textMayer, Marc Frederik [Verfasser], and M. [Akademischer Betreuer] Wegener. "On Multi-Material 3D Laser Microprinting / Marc Frederik Mayer ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1222109476/34.
Full textMayer, Frederik [Verfasser], and M. [Akademischer Betreuer] Wegener. "On Multi-Material 3D Laser Microprinting / Marc Frederik Mayer ; Betreuer: M. Wegener." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1222109476/34.
Full textLandolt, Kevin M. "Development of test targets for microprinting applications on the Kodak NexPress 2100, the Hewlett Packard Indigo 5000 and the Heidelberg Speedmaster 74 /." Online version of thesis, 2007. http://hdl.handle.net/1850/4488.
Full textSlavík, Jan. "Zarovnání excitabilních buněk na multielektrodových polích." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-442346.
Full textHo, Yi-Cheng, and 何顗琤. "Building Neuronal Cell Arrays Using Microprinting and Microstencil Technology." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/09954233742396443993.
Full textBooks on the topic "Microprinting"
Hu, Anming, ed. Laser Micro-Nano-Manufacturing and 3D Microprinting. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1.
Full textBook chapters on the topic "Microprinting"
Chang, Robert C., Kamal Emami, Antony Jeevarajan, Honglu Wu, and Wei Sun. "Microprinting of Liver Micro-organ for Drug Metabolism Study." In Methods in Molecular Biology, 219–38. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-551-0_13.
Full textHu, Anming, Ruozhou Li, Shi Bai, Yongchao Yu, Weiping Zhou, Denzel Bridges, Yangbao Deng, and Lingyue Zhang. "Introduction to Laser Micro-to-Nano Manufacturing." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 1–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_1.
Full textKirihara, Soshu. "Laser Scanning Stereolithography." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 305–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_10.
Full textPfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee, and Hans Jürgen Seifert. "Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.
Full textZhong, Minlin, and Peixun Fan. "Ultrafast Laser Enabling Versatile Fabrication of Surface Micro-nano Structures." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 75–112. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_2.
Full textFalcón Casas, Ignacio, and Wolfgang Kautek. "Apertureless Scanning Near-Field Optical Lithography." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 113–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_3.
Full textCompagnini, Giuseppe, Marcello Condorelli, Carmelo La Rosa, Luisa D’Urso, Salvatore Scirè, Roberto Fiorenza, Simona Filice, and Silvia Scalese. "Laser-Induced Synthesis and Processing of Nanoparticles in the Liquid Phase for Biosensing and Catalysis." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 133–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_4.
Full textSano, Tomokazu. "Dry Laser Peening: Ultrashort Pulsed Laser Peening Without Sacrificial Overlay Under Atmospheric Conditions." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 163–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_5.
Full textChen, Feng, and Javier R. Vázquez de Aldana. "Direct Femtosecond Laser Writing of Optical Waveguides in Dielectrics." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 185–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_6.
Full textFeng, Guoying, Guang Li, Zhuping Wang, and Yao Xiao. "Micro-hole Arrays and Net-like Structure Fabrication via Femtosecond Laser Pulses." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 211–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_7.
Full textConference papers on the topic "Microprinting"
Kandyla, M., C. Pandis, G. Tsekenis, P. Dimitrakis, S. Chatzandroulis, and I. Zergioti. "Biosensor Fabrication by Direct Laser Microprinting." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fwf4.
Full textStrale, Pierre-Olivier, Ammar Azioune, Ghislain Bugnicourt, Yohan Lecomte, Makhlad Chahid, and Vincent Studer. "Light-induced quantitative microprinting of biomolecules." In SPIE OPTO, edited by Michael R. Douglass and Benjamin L. Lee. SPIE, 2017. http://dx.doi.org/10.1117/12.2253831.
Full textPatrascioiu, A., J. M. Fernandez-Pradas, J. L. Morenza, and P. Serra. "Film-free laser microprinting of complex materials." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801536.
Full textSerra, P., A. Patrascioiu, J. M. Fernández-Pradas, and J. L. Morenza. "Film-free laser microprinting of transparent solutions." In SPIE LASE, edited by Xianfan Xu, Guido Hennig, Yoshiki Nakata, and Stephan W. Roth. SPIE, 2013. http://dx.doi.org/10.1117/12.2005881.
Full textHayes, Donald J., and Ting Chen. "Next-generation optoelectronic components enabled by direct-write microprinting technology." In Defense and Security, edited by Andrew R. Pirich, Michael J. Hayduk, and Eric Donkor. SPIE, 2004. http://dx.doi.org/10.1117/12.541071.
Full textFung, Tracy H., Gregory I. Ball, Sarah C. McQuaide, Shih-Hui Chao, Alejandro Coleman-Lerner, Mark R. Holl, and Deirdre R. Meldrum. "Microprinting of On-Chip Cultures: Patterning of Yeast Cell Microarrays Using Concanavalin-A Adhesion." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60866.
Full textLu, Lin, David Wootton, Peter I. Lelkes, and Jack Zhou. "Bone Scaffold Fabrication System Study." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31219.
Full text