Journal articles on the topic 'Micropolar Cohesive Damage Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Micropolar Cohesive Damage Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rahaman, Md M., S. P. Deepu, D. Roy, and J. N. Reddy. "A micropolar cohesive damage model for delamination of composites." Composite Structures 131 (November 2015): 425–32. http://dx.doi.org/10.1016/j.compstruct.2015.05.026.
Full textSuh, Hyoung Suk, WaiChing Sun, and Devin T. O’Connor. "A phase field model for cohesive fracture in micropolar continua." Computer Methods in Applied Mechanics and Engineering 369 (September 2020): 113181. http://dx.doi.org/10.1016/j.cma.2020.113181.
Full textRoy, Samit, and Yong Wang. "Analytical Solution for Cohesive Layer Model and Model Verification." Polymers and Polymer Composites 13, no. 8 (November 2005): 741–52. http://dx.doi.org/10.1177/096739110501300801.
Full textPouya, Ahmad, and Pedram Bemani Yazdi. "A damage-plasticity model for cohesive fractures." International Journal of Rock Mechanics and Mining Sciences 73 (January 2015): 194–202. http://dx.doi.org/10.1016/j.ijrmms.2014.09.024.
Full textSilitonga, Sarmediran, Johan Maljaars, Frans Soetens, and Hubertus H. Snijder. "Numerical Simulation of Fatigue Crack Growth Rate and Crack Retardation due to an Overload Using a Cohesive Zone Model." Advanced Materials Research 891-892 (March 2014): 777–83. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.777.
Full textKim, Dae Kyu. "A constitutive model with damage for cohesive soils." KSCE Journal of Civil Engineering 8, no. 5 (September 2004): 513–19. http://dx.doi.org/10.1007/bf02899578.
Full textGoodarzi, M. Saeed, Hossein Hosseini-Toudeshky, and Meisam Jalalvand. "Shear-Mode Viscoelastic Damage Formulation Interface Element." Key Engineering Materials 713 (September 2016): 167–70. http://dx.doi.org/10.4028/www.scientific.net/kem.713.167.
Full textAbu Al-Rub, Rashid K., and Ammar Alsheghri. "Cohesive Zone Damage-Healing Model for Self-Healing Materials." Applied Mechanics and Materials 784 (August 2015): 111–18. http://dx.doi.org/10.4028/www.scientific.net/amm.784.111.
Full textKale, Sohan, Seid Koric, and Martin Ostoja-Starzewski. "Stochastic Continuum Damage Mechanics Using Spring Lattice Models." Applied Mechanics and Materials 784 (August 2015): 350–57. http://dx.doi.org/10.4028/www.scientific.net/amm.784.350.
Full textIqbal, Javed. "Numerical Simulation of Cracking in Asphalt Concrete Through Continuum and Discrete Damage Model." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (November 30, 2021): 2018——2020. http://dx.doi.org/10.22214/ijraset.2021.39123.
Full textShao, Jiaru R., Niu Liu, and Zijun J. Zheng. "A modified progressive damage model for simulating low-velocity impact of composite laminates." Advances in Mechanical Engineering 14, no. 5 (May 2022): 168781322210959. http://dx.doi.org/10.1177/16878132221095948.
Full textCazes, Fabien, Anita Simatos, Michel Coret, Alain Combescure, and Anthony Gravouil. "Cracking Cohesive Law Thermodynamically Equivalent to a Non-Local Damage Model." Key Engineering Materials 385-387 (July 2008): 81–84. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.81.
Full textNeuner, M., P. Gamnitzer, and G. Hofstetter. "A 3D gradient-enhanced micropolar damage-plasticity approach for modeling quasi-brittle failure of cohesive-frictional materials." Computers & Structures 239 (October 2020): 106332. http://dx.doi.org/10.1016/j.compstruc.2020.106332.
Full textWang, G., and S. F. Li. "A penny-shaped cohesive crack model for material damage." Theoretical and Applied Fracture Mechanics 42, no. 3 (December 2004): 303–16. http://dx.doi.org/10.1016/j.tafmec.2004.09.005.
Full textZhang, Ch, and D. Gross. "Ductile crack analysis by a cohesive damage zone model." Engineering Fracture Mechanics 47, no. 2 (January 1994): 237–48. http://dx.doi.org/10.1016/0013-7944(94)90225-9.
Full textLorentz, Eric, S. Cuvilliez, and K. Kazymyrenko. "Convergence of a gradient damage model toward a cohesive zone model." Comptes Rendus Mécanique 339, no. 1 (January 2011): 20–26. http://dx.doi.org/10.1016/j.crme.2010.10.010.
Full textJohar, Mahzan, Mohamad Shahrul Effendy Kosnan, and Mohd Nasir Tamin. "Cyclic Cohesive Zone Model for Simulation of Fatigue Failure Process in Adhesive Joints." Applied Mechanics and Materials 606 (August 2014): 217–21. http://dx.doi.org/10.4028/www.scientific.net/amm.606.217.
Full textZhang, Jun, Yong Cheng Lin, Xin Li Wei, and Liu Gang Huang. "Investigation on Interfacial Bonding Strength of Anisotropic Conducive Adhesive with a New Cohesive Zone Model." Materials Science Forum 654-656 (June 2010): 1928–31. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1928.
Full textFager, Leif-Olof, and J. L. Bassani. "Stable Crack Growth in Rate-Dependent Materials With Damage." Journal of Engineering Materials and Technology 115, no. 3 (July 1, 1993): 252–61. http://dx.doi.org/10.1115/1.2904215.
Full textTu, H. Y., Ulrich Weber, and Siegfried Schmauder. "Numerical Investigation of the Damage Behavior of S355 EBW by Cohesive Zone Modeling." Advanced Materials Research 1102 (May 2015): 149–53. http://dx.doi.org/10.4028/www.scientific.net/amr.1102.149.
Full textLi, X., and J. Chen. "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials." Computer Methods in Applied Mechanics and Engineering 315 (March 2017): 744–59. http://dx.doi.org/10.1016/j.cma.2016.11.029.
Full textDi Caprio, F., S. Saputo, and A. Sellitto. "Numerical-Experimental Correlation of Interlaminar Damage Growth in Composite Structures: Setting Cohesive Zone Model Parameters." Advances in Materials Science and Engineering 2019 (October 13, 2019): 1–16. http://dx.doi.org/10.1155/2019/2150921.
Full textOmiya, Masaki, and Kikuo Kishimoto. "Damage-based Cohesive Zone Model for Rate-depend Interfacial Fracture." International Journal of Damage Mechanics 19, no. 4 (April 23, 2009): 397–420. http://dx.doi.org/10.1177/1056789509103643.
Full textShintaku, Yuichi, Mayu Muramatsu, Seiichiro Tsutsumi, Kenjiro Terada, Takashi Kyoya, Junji Kato, Shuji Moriguchi, and Shinsuke Takase. "A damage-based cohesive zone model for plastic deformation behavior." Proceedings of The Computational Mechanics Conference 2014.27 (2014): 495–96. http://dx.doi.org/10.1299/jsmecmd.2014.27.495.
Full textZhang, Ch, and D. Gross. "A cohesive plastic/damage-zone model for ductile crack analysis." Nuclear Engineering and Design 158, no. 2-3 (September 1995): 319–31. http://dx.doi.org/10.1016/0029-5493(95)01039-k.
Full textAlfano, Giulio, and Elio Sacco. "Combining interface damage and friction in a cohesive-zone model." International Journal for Numerical Methods in Engineering 68, no. 5 (2006): 542–82. http://dx.doi.org/10.1002/nme.1728.
Full textZhu, He, Gang Wang, Zhen Yue Ma, and Yi Kang Su. "Seismic Time-History Analysis of Gravity Dam Based on Nonlinear Finite Element Method." Applied Mechanics and Materials 351-352 (August 2013): 1047–51. http://dx.doi.org/10.4028/www.scientific.net/amm.351-352.1047.
Full textFalkenberg, Rainer, Wolfgang Brocks, Wolfgang Dietzel, and Ingo Schneider. "Simulation of Stress-Corrosion Cracking by the Cohesive Model." Key Engineering Materials 417-418 (October 2009): 329–32. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.329.
Full textWu, Yan Qing, and Hui Ji Shi. "Cohesive Zone Model for Crack Propagation in a Viscoplastic Polycrystal Material at Elevated Temperature." Key Engineering Materials 306-308 (March 2006): 187–92. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.187.
Full textVu, Hoa Cong. "COMPUTATION FOR THE DELAMINATION IN THE LAMINATE COMPOSITE MATERIAL USING A COHESIVE ZONE MODEL BY ABAQUS." Vietnam Journal of Science and Technology 57, no. 6A (March 20, 2020): 61. http://dx.doi.org/10.15625/2525-2518/57/4a/14094.
Full textVu, Hoa Cong. "COMPUTATION FOR THE DELAMINATION IN THE LAMINATE COMPOSITE MATERIAL USING A COHESIVE ZONE MODEL BY ABAQUS." Vietnam Journal of Science and Technology 57, no. 6A (March 25, 2020): 61. http://dx.doi.org/10.15625/2525-2518/57/6a/14094.
Full textZhang, Jun, Zhong Yao Zhao, and Xin Li Wei. "A Damage Cohesive Model for Simulating 90° Peel Propagation in Anisotropic Conducive Adhesive Bonding." Advanced Materials Research 139-141 (October 2010): 374–77. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.374.
Full textGeraci, G., and M. H. Ferri Aliabadi. "Micromechanical Boundary Element Modelling of Transgranular and Intergranular Cohesive Cracking in Polycrystalline Materials." Key Engineering Materials 713 (September 2016): 54–57. http://dx.doi.org/10.4028/www.scientific.net/kem.713.54.
Full textLi, Bo, and Michelle S. Hoo Fatt. "A Cohesive Zone Model to Predict Dynamic Tearing of Rubber." Tire Science and Technology 43, no. 4 (October 1, 2015): 297–324. http://dx.doi.org/10.2346/tire.15.430403.
Full textZhao, Shi Yang, and Pu Xue. "Prediction of Impact Damage of Composite Laminates Using a Mixed Damage Model." Applied Mechanics and Materials 513-517 (February 2014): 235–37. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.235.
Full textLequesne, Cedric, A. Plumier, H. Degee, and Anne Marie Habraken. "Numerical Study of the Fatigue Crack in Welded Beam-To-Column Connection Using Cohesive Zone Model." Key Engineering Materials 324-325 (November 2006): 847–50. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.847.
Full textRonghui, Wang, Li Shuhu, Liu Yan, Gao Yingying, Zhang Haiyun, Jia Huamin, and Guo Jianfen. "Research onthedelamination damage algorithm offiber reinforced composites." Journal of Physics: Conference Series 2478, no. 2 (June 1, 2023): 022016. http://dx.doi.org/10.1088/1742-6596/2478/2/022016.
Full textFreddi, Francesco, Elio Sacco, and Roberto Serpieri. "An enriched damage-frictional cohesive-zone model incorporating stress multi-axiality." Meccanica 53, no. 3 (October 23, 2017): 573–92. http://dx.doi.org/10.1007/s11012-017-0777-z.
Full textGong, Baoming, Marco Paggi, and Alberto Carpinteri. "A cohesive crack model coupled with damage for interface fatigue problems." International Journal of Fracture 173, no. 2 (January 20, 2012): 91–104. http://dx.doi.org/10.1007/s10704-011-9666-y.
Full textLorentz, Eric. "A nonlocal damage model for plain concrete consistent with cohesive fracture." International Journal of Fracture 207, no. 2 (June 28, 2017): 123–59. http://dx.doi.org/10.1007/s10704-017-0225-z.
Full textChazallon, C., and P. Y. Hicher. "A constitutive model coupling elastoplasticity and damage for cohesive-frictional materials." Mechanics of Cohesive-frictional Materials 3, no. 1 (January 1998): 41–63. http://dx.doi.org/10.1002/(sici)1099-1484(199801)3:1<41::aid-cfm40>3.0.co;2-p.
Full textLi, Gao Chun, Yu Feng Wang, Ai Min Jiang, and Xiang Yi Liu. "A Micromechanical Model for Debonding Process in Composite Solid Propellants." Applied Mechanics and Materials 148-149 (December 2011): 1107–12. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.1107.
Full textKozák, Vladislav, Ivo Dlouhý, and Zdeněk Chlup. "Cohesive Zone Model and GTN Model Collation for Ductile Crack Growth." Materials Science Forum 567-568 (December 2007): 145–48. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.145.
Full textNordmann, Joachim, Konstantin Naumenko, and Holm Altenbach. "A Damage Mechanics Based Cohesive Zone Model with Damage Gradient Extension for Creep-Fatigue-Interaction." Key Engineering Materials 794 (February 2019): 253–59. http://dx.doi.org/10.4028/www.scientific.net/kem.794.253.
Full textLI, SHANHU, and SOMNATH GHOSH. "DEBONDING IN COMPOSITE MICROSTRUCTURES WITH MORPHOLOGICAL VARIATIONS." International Journal of Computational Methods 01, no. 01 (June 2004): 121–49. http://dx.doi.org/10.1142/s0219876204000034.
Full textZhang, Jun, Xu Chen, and Xin Li Wei. "Numerical Calculation of Peeling Strength in Anisotropic Conducive Adhesive Bonding." Key Engineering Materials 324-325 (November 2006): 471–74. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.471.
Full textWei, Xin-Dong, Nhu H. T. Nguyen, Ha H. Bui, and Gao-Feng Zhao. "A modified cohesive damage-plasticity model for distinct lattice spring model on rock fracturing." Computers and Geotechnics 135 (July 2021): 104152. http://dx.doi.org/10.1016/j.compgeo.2021.104152.
Full textPirondi, Alessandro, and Fabrizio Moroni. "Improvement of a Cohesive Zone Model for Fatigue Delamination Rate Simulation." Materials 12, no. 1 (January 7, 2019): 181. http://dx.doi.org/10.3390/ma12010181.
Full textKim, Yong-Rak, David H. Allen, and Gary D. Seidel. "Damage-Induced Modeling of Elastic-Viscoelastic Randomly Oriented Particulate Composites." Journal of Engineering Materials and Technology 128, no. 1 (May 4, 2005): 18–27. http://dx.doi.org/10.1115/1.2127960.
Full textKim, Yong-Rak, Francisco T. S. Aragão, David H. Allen, and Dallas N. Little. "Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture." Canadian Journal of Civil Engineering 37, no. 8 (August 2010): 1125–36. http://dx.doi.org/10.1139/l10-043.
Full text