Academic literature on the topic 'Micropolar Cohesive Damage Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Micropolar Cohesive Damage Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Micropolar Cohesive Damage Model"
Rahaman, Md M., S. P. Deepu, D. Roy, and J. N. Reddy. "A micropolar cohesive damage model for delamination of composites." Composite Structures 131 (November 2015): 425–32. http://dx.doi.org/10.1016/j.compstruct.2015.05.026.
Full textSuh, Hyoung Suk, WaiChing Sun, and Devin T. O’Connor. "A phase field model for cohesive fracture in micropolar continua." Computer Methods in Applied Mechanics and Engineering 369 (September 2020): 113181. http://dx.doi.org/10.1016/j.cma.2020.113181.
Full textRoy, Samit, and Yong Wang. "Analytical Solution for Cohesive Layer Model and Model Verification." Polymers and Polymer Composites 13, no. 8 (November 2005): 741–52. http://dx.doi.org/10.1177/096739110501300801.
Full textPouya, Ahmad, and Pedram Bemani Yazdi. "A damage-plasticity model for cohesive fractures." International Journal of Rock Mechanics and Mining Sciences 73 (January 2015): 194–202. http://dx.doi.org/10.1016/j.ijrmms.2014.09.024.
Full textSilitonga, Sarmediran, Johan Maljaars, Frans Soetens, and Hubertus H. Snijder. "Numerical Simulation of Fatigue Crack Growth Rate and Crack Retardation due to an Overload Using a Cohesive Zone Model." Advanced Materials Research 891-892 (March 2014): 777–83. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.777.
Full textKim, Dae Kyu. "A constitutive model with damage for cohesive soils." KSCE Journal of Civil Engineering 8, no. 5 (September 2004): 513–19. http://dx.doi.org/10.1007/bf02899578.
Full textGoodarzi, M. Saeed, Hossein Hosseini-Toudeshky, and Meisam Jalalvand. "Shear-Mode Viscoelastic Damage Formulation Interface Element." Key Engineering Materials 713 (September 2016): 167–70. http://dx.doi.org/10.4028/www.scientific.net/kem.713.167.
Full textAbu Al-Rub, Rashid K., and Ammar Alsheghri. "Cohesive Zone Damage-Healing Model for Self-Healing Materials." Applied Mechanics and Materials 784 (August 2015): 111–18. http://dx.doi.org/10.4028/www.scientific.net/amm.784.111.
Full textKale, Sohan, Seid Koric, and Martin Ostoja-Starzewski. "Stochastic Continuum Damage Mechanics Using Spring Lattice Models." Applied Mechanics and Materials 784 (August 2015): 350–57. http://dx.doi.org/10.4028/www.scientific.net/amm.784.350.
Full textIqbal, Javed. "Numerical Simulation of Cracking in Asphalt Concrete Through Continuum and Discrete Damage Model." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (November 30, 2021): 2018——2020. http://dx.doi.org/10.22214/ijraset.2021.39123.
Full textDissertations / Theses on the topic "Micropolar Cohesive Damage Model"
Searcy, Chad Randall. "A multiscale model for predicting damage evolution in heterogeneous viscoelastic media." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/1251.
Full textLi, Xiaole. "An extended cohesive damage model for simulating crack propagation in fibre reinforced composies." Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/an-extended-cohesive-damage-model-for-simulating-crack-propagation-in-fibre-reinforced-composies(c8a15f4e-826e-444a-9c8a-758b75f8c742).html.
Full textThomas, Michael Andrew. "Framework for Cohesive Zone Model Based Multiscale Damage Evolution in a Fatigue Environment." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1308257790.
Full textMay, Michael. "A new model for initiation of damage in composites under fatigue loading for cohesive elements." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521074.
Full textLi, Bo. "Applications of Cohesive Zone Models in Dynamic Failure Analysis." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1459953377.
Full textJosefsson, Axel, and Johan Wedin. "Convergence properties of a continuum damage mechanics model for fatigue of adhesive joints." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10188.
Full textBahadursha, Venkata Rama Lakshmi Preeethi. "Tearing of Styrene Butadiene Rubber using Finite Element Analysis." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1431029910.
Full textCuvilliez, Sam. "Passage d’un modèle d’endommagement continu régularisé à un modèle de fissuration cohésive dans le cadre de la rupture quasi-fragile." Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0064/document.
Full textThe present work deals with the study and the improvement of regularized (non local) damage models. It aims to study the transition from a continuous damage field distributed on a structure to a discontinuous macroscopic failure model.First, an analytical one-dimensional study is carried out (on a bar submitted to tensile loading) in order to identify a set of interface laws that enable to switch from an inhomogeneous solution obtained with a continuous gradient damage model to a cohesive zone model. This continuous / discontinuous transition is constructed so that the energetic equivalence between both models remains ensured whatever the damage level reached when switching.This strategy is then extended to the bi-dimensional (and tri-dimensional) case of rectilinear (and plane) crack propagation under mode I loading conditions, in a finite element framework. An explicit approach based on a critical damage criterion that allows coupling both continuous and discontinuous approaches is then proposed. Finally, results of several simulations led with this coupled approach are presented
Swindeman, Michael James. "A Regularized Extended Finite Element Method for Modeling the Coupled Cracking and Delamination of Composite Materials." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1324605778.
Full textCabello, Ulloa Mario Javier. "Desarrollo de modelos para el cálculo de uniones estructurales con adhesivos flexibles." Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/403837.
Full textLes unions adhesives són especialment interessants en aplicacions estructurals i el seu ús ha augmentat notablement en la industria moderna. No obstant, el disseny d’una unió adhesiva segueix essent actualment un repte per als enginyers, doncs no es disposa de models eficaços per a predir el seu comportament. Particularment, la utilització d’adhesius flexibles s’està estenent cada vegada méss degut als avantatges que aquests ofereixen, i actualment s’estan duent a terme nombrosos esforços per obtenir models analítics méss eficaços que permetin poder analitzar-ne el seu comportament. Els models existents, desenvolupats per adhesius compressibles i rígids no son capaços de predir amb precisió el comportament d’unions amb adhesius flexibles, que presenten un mòdul elàstic baix, incompressibilitat i grans deformacions fins a la seva ruptura. Els models analítics més avançats incorporen l’efecte de l’elasticitat de l’adhesiu en la seva formulació com una distribució constant, i com que no tenen en compte aspectes com l’efecte de les tensions sobre la rigidesa de l’adhesiu, la influència del dany i les grans deformacions a la capa de l’adhesiu no són suficientment precisos en la modelització del comportament de la unió.
Las uniones adhesivas son de especial interés en aplicaciones estructurales y su uso ha aumentado notablemente en la industria moderna. Sin embargo, el diseño de uniones adhesivas sigue siendo a día de hoy un reto para los ingenieros que carecen de modelos eficaces para la predicción de su comportamiento. En particular, el uso de adhesivos flexibles se ha convertido en una tendencia en la industria debido a las ventajas que estos ofrecen y se están dedicando numerosos esfuerzos para lograr modelos analíticos más eficaces. Los modelos existentes, desarrollados para adhesivos compresibles rígidos, no son capaces de predecir con precisión el comportamiento de uniones con adhesivos flexibles que presentan bajo módulo elástico, incompresibilidad y grandes deformaciones hasta la rotura. Los modelos analíticos más avanzados incorporan el efecto de la elasticidad del adhesivo en su formulación como una distribución constante y aún carecen de suficiente precisión debido a que no toman en cuenta efectos como la influencia del estado tensional sobre la rigidez, la influencia del daño y las grandes deformaciones presentes en la capa de adhesivo.
Lotura itsasgarriak interes handiko loturak dira aplikazio estrukturaletarako eta bereerabilera nabarmenki handitzen joan da industria mailan. Hala ere, gaur egun loturaitsasgarrien diseinuak erronka izaten jarraitzen du, ingeniariek horien portaera ezagutzekoeredu egokirik ez daukatelako. Konkretuki, itsasgarri malguen erabilera joera bilakatuda industria mailan, eskaintzen dituzten abantailengatik, eta hori dela eta ahalegin handiakegiten ari dira eredu analitiko eraginkorragoak lortzeko. Erabilgarri dauden ereduak,itsasgarri zurrun konprimigarrietarako garatuak zainik, ez dira gai modulu elastiko baxua,konprimitzeko ezintasuna eta haustura arteko deformazio handiak jasaten dituztenitsasgarri malguen jarrera iragartzeko. Eredu analitiko garatuenek itsasgarriaren malgutasunarenefektua banaketa konstante bezala moduan agertzen dute, eta oraindik zehaztasunfalta dute, zurruntasunaren tentsio egoeraren efektuak, kaltearen eragina eta itsasgarriangertatzen diren deformazio handiak kontuan hartzen ez dituztelako.
Book chapters on the topic "Micropolar Cohesive Damage Model"
Méïté, Mamadou, Noé Brice Nkoumbou Kaptchouang, Yann Monerie, Frédéric Perales, and Pierre-Guy Vincent. "Ductile Crack Growth Using Cohesive GTN Model." In Handbook of Damage Mechanics, 1–20. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-4614-8968-9_70-1.
Full textMéïté, Mamadou, Noé Brice Nkoumbou Kaptchouang, Yann Monerie, Frédéric Perales, and Pierre-Guy Vincent. "Ductile Crack Growth Using Cohesive GTN Model." In Handbook of Damage Mechanics, 333–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-60242-0_70.
Full textKabir, R., Alfred Cornec, and Wolfgang Brocks. "Quasi-Brittle Fracture of Lamellar γTiAl: Simulation Using a Cohesive Model with Stochastic Approach." In Fracture and Damage Mechanics V, 1317–20. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.1317.
Full textWang, Cheng Qiang, Zhong Hua Chen, and Chang Liang Zheng. "Semi-Analytical Finite Element Method for Bilinear Cohesive Crack Model in Mode I Crack Propagation." In Fracture and Damage Mechanics V, 755–58. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.755.
Full textLequesne, Cedric, A. Plumier, H. Degee, and Anne Marie Habraken. "Numerical Study of the Fatigue Crack in Welded Beam-To-Column Connection Using Cohesive Zone Model." In Fracture and Damage Mechanics V, 847–50. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.847.
Full textLiu, Pengfei. "Cohesive/friction coupled model and implicit finite element analysis for delamination analysis of composite laminates under three-point bending." In Damage Modeling of Composite Structures, 145–73. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820963-9.00005-5.
Full textLiu, Pengfei. "Viscoelastic bilinear cohesive model and parameter identification for failure analysis of adhesive composite joints using explicit finite element analysis." In Damage Modeling of Composite Structures, 175–90. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820963-9.00004-3.
Full textLiu, Pengfei. "Numerical simulation of micromechanical crack initiation and propagation of thermoplastic composites using extended finite element analysis with embedded cohesive model." In Damage Modeling of Composite Structures, 329–56. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820963-9.00009-2.
Full textLiu, Pengfei. "Viscoelastic cohesive/friction coupled model and explicit finite element analysis for delamination analysis of composite laminates under dynamic three-point bending." In Damage Modeling of Composite Structures, 191–218. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-820963-9.00007-9.
Full textXu, T. Z. "Analysis for Cracking Progress of Concrete Dam Based on Double Scale Variables Damage-based Cohesive Crack Model." In Life-Cycle of Engineering Systems, 1111–16. CRC Press, 2016. http://dx.doi.org/10.1201/9781315375175-141.
Full textConference papers on the topic "Micropolar Cohesive Damage Model"
Zhang, Yan, Jing-yu Fan, and Johan Liu. "Multiscale delamination modeling of an anisotropic conductive adhesive interconnect based on micropolar theory and cohesive zone model." In High Density Packaging (ICEPT-HDP). IEEE, 2009. http://dx.doi.org/10.1109/icept.2009.5270771.
Full textJha, Deepak K., and Anuradha Banerjee. "Cohesive Model in Prediction of Multi-Axial Fatigue." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40353.
Full textHaj-Ali, Rami, Stephen Engelstad, and Jared Walker. "Cohesive Micromechanical Model for Progressive Damage Analysis of Composite Materials and Structures." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2282.
Full textRoy, Samit, Priyank Upadhyaya, Mohammad H. Haque, and Hongbing Lu. "A Multi-Scale Viscoelastic Cohesive Layer Model for Predicting Delamination in HTPMC." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36397.
Full textYang, B., and S. Mall. "Investigation of Damage in Unidirectional Ceramic Matrix Composites Using a Cohesive-Shear-Lag Model." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-25300.
Full textAltammar, Hussain, Sudhir Kaul, and Anoop Dhingra. "Thermo-Mechanical Analysis of Mixed-Mode Damage: Cohesive Zone Modeling." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46057.
Full textJing, Jianping, Feng Gao, Janine Johnson, Frank Z. Liang, Richard L. Williams, and Jianmin Qu. "Simulation of Dynamic Fracture Along Solder-Pad Interfaces Using a Cohesive Zone Model." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68891.
Full textTruong, Do Van. "Simulation of Crack Initiation at the Interface Edge Between Sub-Micron Thick Films Under Creep by Cohesive Zone Model." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72061.
Full textHopkins, Caroline G., Peter E. McHugh, and J. Patrick McGarry. "Computer Modeling of Cardiovascular Stent Coating Damage." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192880.
Full textGonzalez, M., A. Dahi Taleghani, and J. E. Olson. "A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations." In SPE Hydraulic Fracturing Technology Conference. SPE, 2015. http://dx.doi.org/10.2118/spe-173384-ms.
Full text