To see the other types of publications on this topic, follow the link: Micromachined Probe.

Journal articles on the topic 'Micromachined Probe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Micromachined Probe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Genolet, G., M. Despont, P. Vettiger, and N. F. de Rooij. "Micromachined Photoplastic Probes for Scanning Probe Microscopy." Sensors Update 9, no. 1 (May 2001): 3–19. http://dx.doi.org/10.1002/1616-8984(200105)9:1<3::aid-seup3>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Legros, Mathieu, Cyril Meynier, Guillaume Ferin, and Rémi Dufait. "Micromachined probe performance assessment." Journal of the Acoustical Society of America 123, no. 5 (May 2008): 3647. http://dx.doi.org/10.1121/1.2934925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abraham, Michael, W. Ehrfeld, Manfred Lacher, Karsten Mayr, Wilfried Noell, Peter Güthner, and J. Barenz. "Micromachined aperture probe tip for multifunctional scanning probe microscopy." Ultramicroscopy 71, no. 1-4 (March 1998): 93–98. http://dx.doi.org/10.1016/s0304-3991(97)00114-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Noell, W., M. Abraham, K. Mayr, A. Ruf, J. Barenz, O. Hollricher, O. Marti, and P. Güthner. "Micromachined aperture probe tip for multifunctional scanning probe microscopy." Applied Physics Letters 70, no. 10 (March 10, 1997): 1236–38. http://dx.doi.org/10.1063/1.118540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beiley, M., J. Leung, and S. S. Wong. "A micromachined array probe card-characterization." IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B 18, no. 1 (1995): 184–91. http://dx.doi.org/10.1109/96.365507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Senlin, Dacheng Zhang, Longtao Lin, Zhenchuan Yang, and Guizhen Yan. "Silicon probe for micromachined surface profilers." Micro & Nano Letters 6, no. 7 (2011): 490. http://dx.doi.org/10.1049/mnl.2011.0128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ono, Takahito, Phan Ngoc Minh, Dong-Weon Lee, and Masayoshi Esashi. "Micromachined Probe for High Density Data Storage." Review of Laser Engineering 29, Supplement (2001): S11—S12. http://dx.doi.org/10.2184/lsj.29.supplement_s11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davis, R. C., C. C. Williams, and P. Neuzil. "Micromachined submicrometer photodiode for scanning probe microscopy." Applied Physics Letters 66, no. 18 (May 1995): 2309–11. http://dx.doi.org/10.1063/1.114223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beiley, M., J. Leung, and S. S. Wong. "A micromachined array probe card-fabrication process." IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B 18, no. 1 (1995): 179–83. http://dx.doi.org/10.1109/96.365506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ITOH, Toshihiro, Kenichi KATAOKA, and Tadatomo SUGA. "Applicability of Fritting Contacts to Micromachined Probe Cards." Journal of the Japan Society for Precision Engineering 67, no. 8 (2001): 1239–43. http://dx.doi.org/10.2493/jjspe.67.1239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tae Hwan Yoon, Eun Jung Hwang, Dong Yong Shin, Se Ik Park, Seung Jae Oh, Sung Cherl Jung, Hyung Cheul Shin, and Sung June Kim. "A micromachined silicon depth probe for multichannel neural recording." IEEE Transactions on Biomedical Engineering 47, no. 8 (August 2000): 1082–87. http://dx.doi.org/10.1109/10.855936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yi, Ming, Hrishikesh V. Panchawagh, Ronald J. Podhajsky, and Roop L. Mahajan. "Micromachined Hot-Wire Thermal Conductivity Probe for Biomedical Applications." IEEE Transactions on Biomedical Engineering 56, no. 10 (October 2009): 2477–84. http://dx.doi.org/10.1109/tbme.2009.2020991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

D’Amico, A., C. Di Natale, E. Martinelli, A. Tibuzzi, B. Margesin, F. Giacomozzi, G. Soncini, C. Calaza, F. Ficorella, and S. Iarossi. "A micromachined gold–palladium Kelvin probe for hydrogen sensing." Sensors and Actuators B: Chemical 142, no. 2 (November 2009): 418–24. http://dx.doi.org/10.1016/j.snb.2009.03.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Genolet, G., M. Despont, P. Vettiger, U. Staufer, W. Noell, N. F. de Rooij, T. Cueni, M. P. Bernal, and F. Marquis-Weible. "Micromachined photoplastic probe for scanning near-field optical microscopy." Review of Scientific Instruments 72, no. 10 (October 2001): 3877–79. http://dx.doi.org/10.1063/1.1394182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kim, Jung-Mu, Dong Hoon Oh, Jae-Hyoung Park, Jei-Won Cho, Youngwoo Kwon, Changyul Cheon, and Yong-Kweon Kim. "Permittivity measurements up to 30 GHz using micromachined probe." Journal of Micromechanics and Microengineering 15, no. 3 (December 24, 2004): 543–50. http://dx.doi.org/10.1088/0960-1317/15/3/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

SUITA, Kenji, Motoaki HARA, Shinya ISHIKAWA, Katsuhiro TANAKA, Sumito NAGASAWA, and Hiroki KUWANO. "Micromachined Pyroelectric Probe for Non-Contact Thermal Diagnostic Systems." Journal of Advanced Mechanical Design, Systems, and Manufacturing 7, no. 2 (2013): 95–102. http://dx.doi.org/10.1299/jamdsm.7.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Buser, R. A., J. Brugger, and N. F. de Rooij. "Micromachined silicon cantilevers and tips for scanning probe microscopy." Microelectronic Engineering 15, no. 1-4 (October 1991): 407–10. http://dx.doi.org/10.1016/0167-9317(91)90252-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Jung-Mu, Sungjoon Cho, Namgon Kim, Jeonghoon Yoon, Jeiwon Cho, Changyul Cheon, Youngwoo Kwon, and Yong-Kweon Kim. "Planar type micromachined probe with low uncertainty at low frequencies." Sensors and Actuators A: Physical 139, no. 1-2 (September 2007): 111–17. http://dx.doi.org/10.1016/j.sna.2007.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Myung Bok. "Near-Field Optical Recording Using a Micromachined Silicon Aperture Probe." Japanese Journal of Applied Physics 43, No. 9A/B (August 12, 2004): L1156—L1158. http://dx.doi.org/10.1143/jjap.43.l1156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Xiao-Hong, Sui, Pei Wei-Hua, Zhang Ruo-Xin, Lu Lin, and Chen Hong-Da. "A Micromachined SiO 2 /Silicon Probe for Neural Signal Recordings." Chinese Physics Letters 23, no. 7 (June 28, 2006): 1932–34. http://dx.doi.org/10.1088/0256-307x/23/7/076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Itoh, Toshihiro, Tadatomo Suga, Gunter Engelmann, Jürgen Wolf, Oswin Ehrmann, and Herbert Reichl. "Characteristics of fritting contacts utilized for micromachined wafer probe cards." Review of Scientific Instruments 71, no. 5 (May 2000): 2224–27. http://dx.doi.org/10.1063/1.1150610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Di. "Design and fabrication of a micromachined bilayer cantilever probe card." Journal of Micro/Nanolithography, MEMS, and MOEMS 9, no. 4 (October 1, 2010): 043005. http://dx.doi.org/10.1117/1.3517100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yu, Qiang, Matthew F. Bauwens, Chunhu Zhang, Arthur W. Lichtenberger, Robert M. Weikle, and N. Scott Barker. "Improved Micromachined Terahertz On-Wafer Probe Using Integrated Strain Sensor." IEEE Transactions on Microwave Theory and Techniques 61, no. 12 (December 2013): 4613–20. http://dx.doi.org/10.1109/tmtt.2013.2288602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Torun, H., J. Sutanto, K. K. Sarangapani, P. Joseph, F. L. Degertekin, and C. Zhu. "A micromachined membrane-based active probe for biomolecular mechanics measurement." Nanotechnology 18, no. 16 (March 23, 2007): 165303. http://dx.doi.org/10.1088/0957-4484/18/16/165303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Mo-Huang, and Yogesh B. Gianchandani. "Microcalorimetry applications of a surface micromachined bolometer-type thermal probe." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 6 (2000): 3600. http://dx.doi.org/10.1116/1.1313581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Biagi, E., S. Cerbai, L. Masotti, L. Belsito, A. Roncaglia, G. Masetti, and N. Speciale. "Fiber Optic Broadband Ultrasonic Probe for Virtual Biopsy: Technological Solutions." Journal of Sensors 2010 (2010): 1–6. http://dx.doi.org/10.1155/2010/917314.

Full text
Abstract:
An ultrasonic probe was developed by using, in conjunction, optoacoustic and acousto-optic devices based on fiber optic technology. The intrinsic high frequency and wide bandwidth associated both to the opto-acoustic source and to the acousto-optic receiving element could open a way towards a “virtual biopsy” of biological tissue. A Micro-Opto-Mechanical-System (MOMS) approach is proposed to realize the broadband ultrasonic probe on micromachined silicon frames suited to be mounted on the tip of optical fibers.
APA, Harvard, Vancouver, ISO, and other styles
27

Draghi, Ferdinando, Pascal Lomoro, Chandra Bortolotto, Luca Mastrogirolamo, and Fabrizio Calliada. "Comparison between a new ultrasound probe with a capacitive micromachined transducer (CMUT) and a traditional one in musculoskeletal pathology." Acta Radiologica 61, no. 12 (March 4, 2020): 1653–60. http://dx.doi.org/10.1177/0284185120907983.

Full text
Abstract:
Background The capacitive micromachined ultrasound transducer (CMUT) is a new ultrasound (US) probe manufactured by state-of-the-art cutting-edge semi-conductor micromachined electro-mechanical systems (MEMS) technology. Purpose To demonstrate the peculiar characteristics of each probe and the limitations that should be improved. Material and Methods This study was performed from March to April 2018. The only inclusion criterion was the presence of disease, so all patients with musculoskeletal, skin, and subcutaneous pathology were included. A total of 66 patients entered this study. The exams of each patient, with both probes, were evaluated retrospectively and independently by three radiologists. Panoramicity of the images, the definition of superficial structures (<2 cm of depth), the definition of deep structures (>2 cm), and Doppler signal were assessed. A 5-point scale was used for each parameter. Results A total of 89 pathologies were detected. The mean of score for 4G-CMUT was higher than L64 for the panoramicity of the images and the definition of the deep structures. Instead, the mean score for L64 was higher than for 4G-CMUT in the evaluation of superficial structures and Doppler signal. A statistically significant difference was found ( P < 0.05). Conclusion CMUT is a breakthrough in US technology. It allows the use of a single probe for different US examinations. The musculoskeletal, skin, and subcutaneous US can be evaluated with a piezoelectric linear transducer or CMUT. In the present study, the overall diagnostic performance was similar. Improvements in CMUT will provide even more dynamic and flexible imaging capabilities by a transducer, with a wider bandwidth.
APA, Harvard, Vancouver, ISO, and other styles
28

Pekař, Martin, Alexander F. Kolen, Harm Belt, Frank van Heesch, Nenad Mihajlović, Imo E. Hoefer, Tamas Szili-Török, et al. "Preclinical Testing of Frequency-Tunable Capacitive Micromachined Ultrasonic Transducer Probe Prototypes." Ultrasound in Medicine & Biology 43, no. 9 (September 2017): 2079–85. http://dx.doi.org/10.1016/j.ultrasmedbio.2017.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Garcia-Uribe, A., K. C. Balareddy, J. Zou, A. K. Wojcik, K. K. Wang, and L. V. Wang. "Micromachined “side-viewing” optical sensor probe for detection of esophageal cancers." Sensors and Actuators A: Physical 150, no. 1 (March 2009): 144–50. http://dx.doi.org/10.1016/j.sna.2008.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Boulmé, Audren, Sophie Ngo, Jean-Gabriel Minonzio, Mathieu Legros, Maryline Talmant, Pascal Laugier, and Dominique Certon. "A capacitive micromachined ultrasonic transducer probe for assessment of cortical bone." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61, no. 4 (April 2014): 710–23. http://dx.doi.org/10.1109/tuffc.2014.2959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chavan, Dhwajal, Jianhua Mo, Mattijs de Groot, Anna Meijering, Johannes F. de Boer, and Davide Iannuzzi. "Collecting optical coherence elastography depth profiles with a micromachined cantilever probe." Optics Letters 38, no. 9 (April 26, 2013): 1476. http://dx.doi.org/10.1364/ol.38.001476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brook, A. J., S. J. Bending, J. Pinto, A. Oral, D. Ritchie, H. Beere, A. Springthorpe, and M. Henini. "Micromachined III V cantilevers for AFM-tracking scanning Hall probe microscopy." Journal of Micromechanics and Microengineering 13, no. 1 (December 2, 2002): 124–28. http://dx.doi.org/10.1088/0960-1317/13/1/317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Amaral, José, João Gaspar, Vitor Pinto, Tiago Costa, Nuno Sousa, Susana Cardoso, and Paulo Freitas. "Measuring brain activity with magnetoresistive sensors integrated in micromachined probe needles." Applied Physics A 111, no. 2 (February 26, 2013): 407–12. http://dx.doi.org/10.1007/s00339-013-7621-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ben Mbarek, Sofiane, Fethi Choubani, and Bernard Cretin. "Investigation of new micromachined coplanar probe for near-field microwave microscopy." Microsystem Technologies 24, no. 7 (February 7, 2018): 2887–93. http://dx.doi.org/10.1007/s00542-018-3766-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dean, Robert, Jenny Weller, Mike Bozack, Brian Farrell, Linas Jauniskis, Joseph Ting, David Edell, and Jamille Hetke. "Micromachined LCP Connectors for Packaging MEMS Devices in Biological Environments." Journal of Microelectronics and Electronic Packaging 4, no. 1 (January 1, 2007): 17–22. http://dx.doi.org/10.4071/1551-4897-4.1.17.

Full text
Abstract:
Micro- and nano-MEMS technology is being increasingly exploited in biological applications, such as large electrode-count neural prosthesis probe arrays. However, a bottleneck in fully utilizing this technology has been the interconnect between the implanted MEMS device and the external system connected to the implanted device. Since the implanted MEMS device is capable of having a large number of elements, the interconnect must have a sufficient number of electrical connections to communicate with each and every element. Complicating this is the fact that the interconnect requirements may include electrical signals, microfluidics transport and optical signals, all packaged in a miniature biocompatible interconnect cable. Micromachined liquid crystal polymer (LCP) is a promising technology for this application, due to LCP's biocompatibility, chemical inertness, electromechanical properties and its ability to be micromachined. This paper presents the results from the development of MEMS packaging technology suitable for use in biological environments, and is demonstrated in the realization of a prototype micromachined LCP biomedical interconnect device. In particular, the development of the interconnect device demonstrates the realization of biocompatible connectors with high-density ultra-fine pitch electrical traces.
APA, Harvard, Vancouver, ISO, and other styles
36

Lai, Richard K., Jiunn‐Ren Hwang, John Nees, Theodore B. Norris, and John F. Whitaker. "A fiber‐mounted, micromachined photoconductive probe with 15 nV/Hz1/2 sensitivity." Applied Physics Letters 69, no. 13 (September 23, 1996): 1843–45. http://dx.doi.org/10.1063/1.117452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ono, Takahito, Kentaro Iwami, and Masayoshi Esashi. "Micromachined Optical Near-Field Bow-Tie Antenna Probe with Integrated Electrostatic Actuator." Japanese Journal of Applied Physics 44, No. 14 (March 18, 2005): L445—L448. http://dx.doi.org/10.1143/jjap.44.l445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, You-Yin, Te-Son Kuo, and Fu-Shan Jaw. "A laser micromachined probe for recording multiple field potentials in the thalamus." Journal of Neuroscience Methods 139, no. 1 (October 2004): 99–109. http://dx.doi.org/10.1016/j.jneumeth.2004.04.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gonzalez, Benjamin D., Matthew F. Bauwens, Chunhu Zhang, Arthur W. Lichtenberger, N. Scott Barker, and Robert M. Weikle. "A 0–40 GHz On-Wafer Probe With Replaceable Micromachined Silicon Tip." IEEE Microwave and Wireless Components Letters 26, no. 2 (February 2016): 110–12. http://dx.doi.org/10.1109/lmwc.2016.2517074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Topfer, Fritzi, Lennart Emtestam, and Joachim Oberhammer. "Long-Term Monitoring of Skin Recovery by Micromachined Microwave Near-Field Probe." IEEE Microwave and Wireless Components Letters 27, no. 6 (June 2017): 605–7. http://dx.doi.org/10.1109/lmwc.2017.2701336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jung-Mu Kim, Donghoon Oh, Jeonghoon Yoon, Sungjoon Cho, Namgon Kim, Jeiwon Cho, Youngwoo Kwon, Changyul Cheon, and Yong-Kweon Kim. "In vitro and in vivo measurement for biological applications using micromachined probe." IEEE Transactions on Microwave Theory and Techniques 53, no. 11 (November 2005): 3415–21. http://dx.doi.org/10.1109/tmtt.2005.857116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tsou, Chingfu, Tengshian Lai, and Chenghan Huang. "A Novel Micromachined Claw Probe for the Electrical Testing of Microsolder Ball." Journal of Microelectromechanical Systems 21, no. 5 (October 2012): 1022–31. http://dx.doi.org/10.1109/jmems.2012.2203098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Borisenkov, Youry, Michael Kholmyansky, Slava Krylov, Alex Liberzon, and Arkady Tsinober. "Multiarray Micromachined Probe for Turbulence Measurements Assembled of Suspended Hot-Film Sensors." Journal of Microelectromechanical Systems 24, no. 5 (October 2015): 1503–9. http://dx.doi.org/10.1109/jmems.2015.2417213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tsou, Chingfu, Shuen-Lung Huang, Hung-Chung Li, and Teng-Hsien Lai. "Design and fabrication of Electroplating Nickel Micromachined Probe with out-of-plane predeformation." Journal of Physics: Conference Series 34 (April 1, 2006): 95–100. http://dx.doi.org/10.1088/1742-6596/34/1/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Shifeng, Kashan A. Shaikh, Sandra Szegedi, Edgar Goluch, and Chang Liu. "Micromachined inking chip for scanning probe nanolithography using local thermal vapor inking method." Applied Physics Letters 89, no. 17 (October 23, 2006): 173125. http://dx.doi.org/10.1063/1.2364881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

David, G., S. Thomas, K. R. Elliott, Tae-Yeoul Yun, M. H. Crites, J. F. Whitaker, T. R. Weatherford, et al. "Absolute potential measurements inside microwave digital IC's using a micromachined photoconductive sampling probe." IEEE Transactions on Microwave Theory and Techniques 46, no. 12 (December 1998): 2330–37. http://dx.doi.org/10.1109/22.739220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Caliano, G., R. Carotenuto, E. Cianci, V. Foglietti, A. Caronti, A. Iula, and M. Pappalardo. "Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 52, no. 12 (December 2005): 2259–69. http://dx.doi.org/10.1109/tuffc.2005.1563268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chu, L. L., K. Takahata, P. R. Selvaganapathy, Y. B. Gianchandani, and J. L. Shohet. "A micromachined Kelvin probe with integrated actuator for microfluidic and solid-state applications." Journal of Microelectromechanical Systems 14, no. 4 (August 2005): 691–98. http://dx.doi.org/10.1109/jmems.2005.845453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nozokido, Tatsuo, Noriyuki Miyasaka, and Jongsuck Bae. "Near-field slit probe incorporating a micromachined silicon chip for millimeter-wave microscopy." Microwave and Optical Technology Letters 53, no. 3 (January 19, 2011): 660–64. http://dx.doi.org/10.1002/mop.25793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Persaud, A., K. Ivanova, Y. Sarov, Tzv Ivanov, B. E. Volland, I. W. Rangelow, N. Nikolov, et al. "Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 6 (2006): 3148. http://dx.doi.org/10.1116/1.2375079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography