Journal articles on the topic 'Microfluidics paper-based analytical device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microfluidics paper-based analytical device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Coltro, Wendell. "Paper-based microfluidics: What can we expect?" Brazilian Journal of Analytical Chemistry 9, no. 37 (October 5, 2022): 11–13. http://dx.doi.org/10.30744/brjac.2179-3425.point-of-view-wktcoltro.n37.
Full textCatalan-Carrio, Raquel, Tugce Akyazi, Lourdes Basabe-Desmonts, and Fernando Benito-Lopez. "Predicting Dimensions in Microfluidic Paper Based Analytical Devices." Sensors 21, no. 1 (December 26, 2020): 101. http://dx.doi.org/10.3390/s21010101.
Full textMeredith, Nathan A., Casey Quinn, David M. Cate, Thomas H. Reilly, John Volckens, and Charles S. Henry. "Paper-based analytical devices for environmental analysis." Analyst 141, no. 6 (2016): 1874–87. http://dx.doi.org/10.1039/c5an02572a.
Full textJuang, Yi-Je, and Shu-Kai Hsu. "Fabrication of Paper-Based Microfluidics by Spray on Printed Paper." Polymers 14, no. 3 (February 8, 2022): 639. http://dx.doi.org/10.3390/polym14030639.
Full textOzer, Tugba, Catherine McMahon, and Charles S. Henry. "Advances in Paper-Based Analytical Devices." Annual Review of Analytical Chemistry 13, no. 1 (June 12, 2020): 85–109. http://dx.doi.org/10.1146/annurev-anchem-061318-114845.
Full textLim, Jafry, and Lee. "Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices." Molecules 24, no. 16 (August 7, 2019): 2869. http://dx.doi.org/10.3390/molecules24162869.
Full textChannon, Robert B., Michael P. Nguyen, Alexis G. Scorzelli, Elijah M. Henry, John Volckens, David S. Dandy, and Charles S. Henry. "Rapid flow in multilayer microfluidic paper-based analytical devices." Lab on a Chip 18, no. 5 (2018): 793–802. http://dx.doi.org/10.1039/c7lc01300k.
Full textLi, Qi, Xingchen Zhou, Qian Wang, Wenfang Liu, and Chuanpin Chen. "Microfluidics for COVID-19: From Current Work to Future Perspective." Biosensors 13, no. 2 (January 20, 2023): 163. http://dx.doi.org/10.3390/bios13020163.
Full textMentele, Mallory M., Josephine Cunningham, Kirsten Koehler, John Volckens, and Charles S. Henry. "Microfluidic Paper-Based Analytical Device for Particulate Metals." Analytical Chemistry 84, no. 10 (April 26, 2012): 4474–80. http://dx.doi.org/10.1021/ac300309c.
Full textKugimiya, Akimitsu, Akane Fujikawa, Xiao Jiang, Z. Hugh Fan, Toshikazu Nishida, Jiro Kohda, Yasuhisa Nakano, and Yu Takano. "Microfluidic Paper-Based Analytical Device for Histidine Determination." Applied Biochemistry and Biotechnology 192, no. 3 (June 27, 2020): 812–21. http://dx.doi.org/10.1007/s12010-020-03365-z.
Full textAmin, Reza, Fariba Ghaderinezhad, Caleb Bridge, Mikail Temirel, Scott Jones, Panteha Toloueinia, and Savas Tasoglu. "Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach." Micromachines 11, no. 6 (June 24, 2020): 611. http://dx.doi.org/10.3390/mi11060611.
Full textLai, Xiaochen, Yanfei Sun, Mingpeng Yang, and Hao Wu. "Rubik’s Cube as Reconfigurable Microfluidic Platform for Rapid Setup and Switching of Analytical Devices." Micromachines 13, no. 12 (November 24, 2022): 2054. http://dx.doi.org/10.3390/mi13122054.
Full textMännel, Max J., Elif Baysak, and Julian Thiele. "Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography." Molecules 26, no. 9 (May 10, 2021): 2817. http://dx.doi.org/10.3390/molecules26092817.
Full textMabbott, Samuel, Syrena C. Fernandes, Monika Schechinger, Gerard L. Cote, Karen Faulds, Charles R. Mace, and Duncan Graham. "Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering." Analyst 145, no. 3 (2020): 983–91. http://dx.doi.org/10.1039/c9an01748h.
Full textMeredith, Nathan A., John Volckens, and Charles S. Henry. "Paper-based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn(ii) and Co(ii)." Analytical Methods 9, no. 3 (2017): 534–40. http://dx.doi.org/10.1039/c6ay02798a.
Full textPrasad, Alisha, Tiffany Tran, and Manas Gartia. "Multiplexed Paper Microfluidics for Titration and Detection of Ingredients in Beverages." Sensors 19, no. 6 (March 14, 2019): 1286. http://dx.doi.org/10.3390/s19061286.
Full textSameenoi, Yupaporn, Pantila Panymeesamer, Natcha Supalakorn, Kirsten Koehler, Orawon Chailapakul, Charles S. Henry, and John Volckens. "Microfluidic Paper-Based Analytical Device for Aerosol Oxidative Activity." Environmental Science & Technology 47, no. 2 (December 21, 2012): 932–40. http://dx.doi.org/10.1021/es304662w.
Full textJiang, Qingyun, Tingting Han, Haijun Ren, Aziz Ur Rehman Aziz, Na Li, Hangyu Zhang, Zhengyao Zhang, and Bo Liu. "Bladder cancer hunting: A microfluidic paper‐based analytical device." ELECTROPHORESIS 41, no. 16-17 (June 26, 2020): 1509–16. http://dx.doi.org/10.1002/elps.202000080.
Full textZhang, Yuxin, Tim Cole, Guolin Yun, Yuxing Li, Qianbin Zhao, Hongda Lu, Jiahao Zheng, Weihua Li, and Shi-Yang Tang. "Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators." Micromachines 12, no. 6 (May 23, 2021): 604. http://dx.doi.org/10.3390/mi12060604.
Full textHe, Mengyuan, and Zhihong Liu. "Paper-Based Microfluidic Device with Upconversion Fluorescence Assay." Analytical Chemistry 85, no. 24 (December 5, 2013): 11691–94. http://dx.doi.org/10.1021/ac403693g.
Full textBleul, Regina, Marion Ritzi-Lehnert, Julian Höth, Nico Scharpfenecker, Ines Frese, Dominik Düchs, Sabine Brunklaus, Thomas E. Hansen-Hagge, Franz-Josef Meyer-Almes, and Klaus S. Drese. "Compact, cost-efficient microfluidics-based stopped-flow device." Analytical and Bioanalytical Chemistry 399, no. 3 (November 30, 2010): 1117–25. http://dx.doi.org/10.1007/s00216-010-4446-5.
Full textHassan, Sammer-ul, and Xunli Zhang. "Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review." Current Analytical Chemistry 16, no. 1 (January 8, 2020): 41–51. http://dx.doi.org/10.2174/1573411015666181224145845.
Full textZhou, Cai Bin, Yun Zhang, Shang Wang Le, Jin Fang Nie, Ting Zhang, Fang Liu, and Jian Ping Li. "Fabrication of Paper-Based Microfluidics by Single-Step Wax Printing for Portable Multianalyte Bioassays." Advanced Materials Research 881-883 (January 2014): 503–8. http://dx.doi.org/10.4028/www.scientific.net/amr.881-883.503.
Full textAtabakhsh, Saeed, Zahra Latifi Namin, and Shahin Jafarabadi Ashtiani. "Paper-based resistive heater with accurate closed-loop temperature control for microfluidics paper-based analytical devices." Microsystem Technologies 24, no. 9 (April 7, 2018): 3915–24. http://dx.doi.org/10.1007/s00542-018-3891-5.
Full textRamana, Lakshmi Narashimhan, Santosh S. Mathapati, Nitin Salvi, M. V. Khadilkar, Anita Malhotra, Vishal Santra, and Tarun Kumar Sharma. "A paper microfluidic device based colorimetric sensor for the detection and discrimination of elapid versus viper envenomation." Analyst 147, no. 4 (2022): 685–94. http://dx.doi.org/10.1039/d1an01698a.
Full textEvard, Hanno, Hans Priks, Indrek Saar, Heili Aavola, Tarmo Tamm, and Ivo Leito. "A New Direction in Microfluidics: Printed Porous Materials." Micromachines 12, no. 6 (June 8, 2021): 671. http://dx.doi.org/10.3390/mi12060671.
Full textBuser, Joshua R., Samantha A. Byrnes, Caitlin E. Anderson, Arielle J. Howell, Peter C. Kauffman, Joshua D. Bishop, Maxwell H. Wheeler, Sujatha Kumar, and Paul Yager. "Understanding partial saturation in paper microfluidics enables alternative device architectures." Analytical Methods 11, no. 3 (2019): 336–45. http://dx.doi.org/10.1039/c8ay01977k.
Full textZhang, Lina, Yanhu Wang, Chao Ma, Panpan Wang, and Mei Yan. "Self-powered sensor for Hg2+detection based on hollow-channel paper analytical devices." RSC Advances 5, no. 31 (2015): 24479–85. http://dx.doi.org/10.1039/c4ra14154g.
Full textKim, Uihwan, Byeolnim Oh, Jiyeon Ahn, Sangwook Lee, and Younghak Cho. "Inertia–Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation." Sensors 22, no. 13 (June 22, 2022): 4709. http://dx.doi.org/10.3390/s22134709.
Full textTemirel, Mikail, Sajjad Rahmani Dabbagh, and Savas Tasoglu. "Hemp-Based Microfluidics." Micromachines 12, no. 2 (February 12, 2021): 182. http://dx.doi.org/10.3390/mi12020182.
Full textDavic, Andrew, and Michael Cascio. "Development of a Microfluidic Platform for Trace Lipid Analysis." Metabolites 11, no. 3 (February 24, 2021): 130. http://dx.doi.org/10.3390/metabo11030130.
Full textJiang, Yan, Zhenxia Hao, Qiaohong He, and Hengwu Chen. "A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator." RSC Advances 6, no. 4 (2016): 2888–94. http://dx.doi.org/10.1039/c5ra23470k.
Full textCate, David M., Scott D. Noblitt, John Volckens, and Charles S. Henry. "Multiplexed paper analytical device for quantification of metals using distance-based detection." Lab on a Chip 15, no. 13 (2015): 2808–18. http://dx.doi.org/10.1039/c5lc00364d.
Full textRaj, Nikhil, Victor Breedveld, and Dennis W. Hess. "Flow control in fully enclosed microfluidics paper based analytical devices using plasma processes." Sensors and Actuators B: Chemical 320 (October 2020): 128606. http://dx.doi.org/10.1016/j.snb.2020.128606.
Full textKudo, Hiroko, Kento Maejima, Yuki Hiruta, and Daniel Citterio. "Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin." SLAS TECHNOLOGY: Translating Life Sciences Innovation 25, no. 1 (October 28, 2019): 47–57. http://dx.doi.org/10.1177/2472630319884031.
Full textRosenfeld, Tally, and Moran Bercovici. "1000-fold sample focusing on paper-based microfluidic devices." Lab Chip 14, no. 23 (2014): 4465–74. http://dx.doi.org/10.1039/c4lc00734d.
Full textWeng, Xuan, and Suresh Neethirajan. "Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device." Microchimica Acta 184, no. 11 (September 11, 2017): 4545–52. http://dx.doi.org/10.1007/s00604-017-2467-x.
Full textYoung, Katherine M., Peter G. Shankles, Theresa Chen, Kelly Ahkee, Sydney Bules, and Todd Sulchek. "Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets." Biomicrofluidics 16, no. 3 (May 2022): 034104. http://dx.doi.org/10.1063/5.0080510.
Full textPesaran, Shiva, Elmira Rafatmah, and Bahram Hemmateenejad. "An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics." Biosensors 11, no. 2 (February 10, 2021): 44. http://dx.doi.org/10.3390/bios11020044.
Full textYamada, Kentaro, Hiroyuki Shibata, Koji Suzuki, and Daniel Citterio. "Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges." Lab on a Chip 17, no. 7 (2017): 1206–49. http://dx.doi.org/10.1039/c6lc01577h.
Full textFerreira, Francisca T. S. M., Karina A. Catalão, Raquel B. R. Mesquita, and António O. S. S. Rangel. "New microfluidic paper-based analytical device for iron determination in urine samples." Analytical and Bioanalytical Chemistry 413, no. 30 (October 15, 2021): 7463–72. http://dx.doi.org/10.1007/s00216-021-03706-9.
Full textJayawardane, B. Manori, Shen Wei, Ian D. McKelvie, and Spas D. Kolev. "Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate." Analytical Chemistry 86, no. 15 (July 7, 2014): 7274–79. http://dx.doi.org/10.1021/ac5013249.
Full textWang, Yanhu, Shoumei Wang, Shenguang Ge, Shaowei Wang, Mei Yan, Dejin Zang, and Jinghua Yu. "Ultrasensitive chemiluminescence detection of DNA on a microfluidic paper-based analytical device." Monatshefte für Chemie - Chemical Monthly 145, no. 1 (May 14, 2013): 129–35. http://dx.doi.org/10.1007/s00706-013-0971-1.
Full textRattanarat, Poomrat, Wijitar Dungchai, David M. Cate, Weena Siangproh, John Volckens, Orawon Chailapakul, and Charles S. Henry. "A microfluidic paper-based analytical device for rapid quantification of particulate chromium." Analytica Chimica Acta 800 (October 2013): 50–55. http://dx.doi.org/10.1016/j.aca.2013.09.008.
Full textTaghizadeh-Behbahani, Maryam, Bahram Hemmateenejad, and Mojtaba Shamsipur. "Colorimetric determination of acidity constant using a paper-based microfluidic analytical device." Chemical Papers 72, no. 5 (December 12, 2017): 1239–47. http://dx.doi.org/10.1007/s11696-017-0357-7.
Full textKim, Dami, SeJin Kim, and Sanghyo Kim. "An innovative blood plasma separation method for a paper-based analytical device using chitosan functionalization." Analyst 145, no. 16 (2020): 5491–99. http://dx.doi.org/10.1039/d0an00500b.
Full textRosenfeld, Tally, and Moran Bercovici. "Amplification-free detection of DNA in a paper-based microfluidic device using electroosmotically balanced isotachophoresis." Lab on a Chip 18, no. 6 (2018): 861–68. http://dx.doi.org/10.1039/c7lc01250k.
Full textLiu, Yu-Ci, Chia-Hui Hsu, Bing-Jyun Lu, Peng-Yi Lin, and Mei-Lin Ho. "Determination of nitrite ions in environment analysis with a paper-based microfluidic device." Dalton Transactions 47, no. 41 (2018): 14799–807. http://dx.doi.org/10.1039/c8dt02960a.
Full textMorbioli, Giorgio Gianini, Thiago Mazzu-Nascimento, Luis Aparecido Milan, Amanda M. Stockton, and Emanuel Carrilho. "Improving Sample Distribution Homogeneity in Three-Dimensional Microfluidic Paper-Based Analytical Devices by Rational Device Design." Analytical Chemistry 89, no. 9 (April 19, 2017): 4786–92. http://dx.doi.org/10.1021/acs.analchem.6b04953.
Full textFarasat, Malihe, Ehsan Aalaei, Saeed Kheirati Ronizi, Atin Bakhshi, Shaghayegh Mirhosseini, Jun Zhang, Nam-Trung Nguyen, and Navid Kashaninejad. "Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation." Biosensors 12, no. 7 (July 11, 2022): 510. http://dx.doi.org/10.3390/bios12070510.
Full text