Journal articles on the topic 'Microfluidic optical chip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Microfluidic optical chip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Qu, Jian, Yi Liu, Yan Li, Jinjian Li, and Songhe Meng. "Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions." Sensors 23, no. 5 (February 23, 2023): 2478. http://dx.doi.org/10.3390/s23052478.
Full textAdamopoulos, Christos, Asmaysinh Gharia, Ali Niknejad, Vladimir Stojanović, and Mekhail Anwar. "Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding." Biosensors 10, no. 11 (November 14, 2020): 177. http://dx.doi.org/10.3390/bios10110177.
Full textAlhalaili, Badriyah, Ileana Nicoleta Popescu, Carmen Otilia Rusanescu, and Ruxandra Vidu. "Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review." Sustainability 14, no. 19 (October 9, 2022): 12844. http://dx.doi.org/10.3390/su141912844.
Full textPaiè, Petra, Rebeca Martínez Vázquez, Roberto Osellame, Francesca Bragheri, and Andrea Bassi. "Microfluidic Based Optical Microscopes on Chip." Cytometry Part A 93, no. 10 (September 13, 2018): 987–96. http://dx.doi.org/10.1002/cyto.a.23589.
Full textOu, Xiaowen, Peng Chen, and Bi-Feng Liu. "Optical Technologies for Single-Cell Analysis on Microchips." Chemosensors 11, no. 1 (January 3, 2023): 40. http://dx.doi.org/10.3390/chemosensors11010040.
Full textKumar, Rahul, Hien Nguyen, Bruno Rente, Christabel Tan, Tong Sun, and Kenneth T. V. Grattan. "A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications." Micromachines 13, no. 8 (July 30, 2022): 1224. http://dx.doi.org/10.3390/mi13081224.
Full textKOU, Q. "On-chip optical components and microfluidic systems." Microelectronic Engineering 73-74 (June 2004): 876–80. http://dx.doi.org/10.1016/s0167-9317(04)00237-0.
Full textHoera, Christian, Andreas Kiontke, Maik Pahl, and Detlev Belder. "A chip-integrated optical microfluidic pressure sensor." Sensors and Actuators B: Chemical 255 (February 2018): 2407–15. http://dx.doi.org/10.1016/j.snb.2017.08.195.
Full textBissardon, Caroline, Xavier Mermet, Sophie Morales, Frédéric Bottausci, Marie Carriere, Florence Rivera, and Pierre Blandin. "Light sheet fluorescence microscope for microfluidic chip." EPJ Web of Conferences 238 (2020): 04005. http://dx.doi.org/10.1051/epjconf/202023804005.
Full textBaczyński, Szymon, Piotr Sobotka, Kasper Marchlewicz, Artur Dybko, and Katarzyna Rutkowska. "Low-cost, widespread and reproducible mold fabrication technique for PDMS-based microfluidic photonic systems." Photonics Letters of Poland 12, no. 1 (March 31, 2020): 22. http://dx.doi.org/10.4302/plp.v12i1.981.
Full textKojic, Sanja P., Goran M. Stojanovic, and Vasa Radonic. "Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization." Sensors 19, no. 7 (April 10, 2019): 1719. http://dx.doi.org/10.3390/s19071719.
Full textYang, Ning, Pan Wang, Chen Pan, Chang-Hua Xiang, Liang-Liang Xie, and Han-Ping Mao. "Compensation method of error caused from maladjustment of optical path based on microfluidic chip." Modern Physics Letters B 32, no. 34n36 (December 30, 2018): 1840081. http://dx.doi.org/10.1142/s021798491840081x.
Full textGrigorev, Georgii V., Alexander V. Lebedev, Xiaohao Wang, Xiang Qian, George V. Maksimov, and Liwei Lin. "Advances in Microfluidics for Single Red Blood Cell Analysis." Biosensors 13, no. 1 (January 9, 2023): 117. http://dx.doi.org/10.3390/bios13010117.
Full textYANG Lu-xia, 杨潞霞, 郝晓剑 HAO Xiao-jian, 王春水 WANG Chun-shui, 张斌珍 ZHANG Bin-zhen, and 王万军 WANG Wan-jun. "Three-dimensional focusing microfluidic chip." Optics and Precision Engineering 21, no. 9 (2013): 2309–16. http://dx.doi.org/10.3788/ope.20132109.2309.
Full textDietvorst, Jiri, Jeroen Goyvaerts, Tobias Nils Ackermann, Erica Alvarez, Xavier Muñoz-Berbel, and Andreu Llobera. "Microfluidic-controlled optical router for lab on a chip." Lab on a Chip 19, no. 12 (2019): 2081–88. http://dx.doi.org/10.1039/c9lc00143c.
Full textWu, Shigang, Xin Wang, Zongwen Li, Shijie Zhang, and Fei Xing. "Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors." Micromachines 11, no. 12 (November 30, 2020): 1059. http://dx.doi.org/10.3390/mi11121059.
Full textKim, Hojin, Alexander Zhbanov, and Sung Yang. "Microfluidic Systems for Blood and Blood Cell Characterization." Biosensors 13, no. 1 (December 22, 2022): 13. http://dx.doi.org/10.3390/bios13010013.
Full textZhang, Wu Ming, Zhen Yu Li, Tao Chen, Jian Jiang Yao, Yang Lv, Min Li, and Guang Li. "A Hybrid-Structured Microfluidic Chip Developed for ATP Bioluminescence Detection." Key Engineering Materials 531-532 (December 2012): 563–69. http://dx.doi.org/10.4028/www.scientific.net/kem.531-532.563.
Full textGlinkowska Mares, Adrianna, Natalia Feiner-Gracia, Yolanda Muela, Gema Martínez, Lidia Delgado, Lorenzo Albertazzi, and Silvia Pujals. "Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy." Applied Nano 2, no. 4 (September 30, 2021): 289–302. http://dx.doi.org/10.3390/applnano2040021.
Full textHassan, Sammer-ul, and Xunli Zhang. "Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels." Micromachines 11, no. 4 (April 5, 2020): 385. http://dx.doi.org/10.3390/mi11040385.
Full textLevy, Uriel, Kyle Campbell, Alex Groisman, Shayan Mookherjea, and Yeshaiahu Fainman. "On-chip microfluidic tuning of an optical microring resonator." Applied Physics Letters 88, no. 11 (March 13, 2006): 111107. http://dx.doi.org/10.1063/1.2182111.
Full textFleger, Markus, and Andreas Neyer. "PDMS microfluidic chip with integrated waveguides for optical detection." Microelectronic Engineering 83, no. 4-9 (April 2006): 1291–93. http://dx.doi.org/10.1016/j.mee.2006.01.086.
Full textWei, Yu-Jia, Ya-Nan Zhao, Xuan Zhang, Xing Wei, Ming-Li Chen, and Xu-Wei Chen. "Biochemical analysis based on optical detection integrated microfluidic chip." TrAC Trends in Analytical Chemistry 158 (January 2023): 116865. http://dx.doi.org/10.1016/j.trac.2022.116865.
Full textAhmed, Isteaque, Katherine Sullivan, and Aashish Priye. "Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components." Biosensors 12, no. 8 (August 17, 2022): 652. http://dx.doi.org/10.3390/bios12080652.
Full textJi, Miaomiao, Junping Duan, Wenxuan Zang, Zhongbao Luo, Zeng Qu, Xiaohong Li, and Binzhen Zhang. "Ultra-high precision passive particle sorting chip coupling inertial microfluidics and single row micropillar arrays." Journal of Micromechanics and Microengineering 32, no. 4 (March 7, 2022): 045004. http://dx.doi.org/10.1088/1361-6439/ac56e9.
Full textWANG, Hong, Jie ZHENG, Yan-peng YAN, Song WANG, Hao-zheng LI, and Jian-guo CUI. "Drop driving on digital microfluidic chip." Optics and Precision Engineering 28, no. 11 (2020): 2488–96. http://dx.doi.org/10.37188/ope.20202811.2488.
Full textGharib, Ghazaleh, İsmail Bütün, Zülâl Muganlı, Gül Kozalak, İlayda Namlı, Seyedali Seyedmirzaei Sarraf, Vahid Ebrahimpour Ahmadi, Erçil Toyran, Andre J. van Wijnen, and Ali Koşar. "Biomedical Applications of Microfluidic Devices: A Review." Biosensors 12, no. 11 (November 16, 2022): 1023. http://dx.doi.org/10.3390/bios12111023.
Full textHUANG, GUOLIANG, XIAOYONG YANG, JIANG ZHU, SHUKUAN XU, CHENG DENG, and CHAO HAN. "DETECTION AND APPLICATION OF MICROFLUIDIC ISOTHERMAL AMPLIFICATION ON CHIP." Journal of Innovative Optical Health Sciences 01, no. 02 (October 2008): 257–65. http://dx.doi.org/10.1142/s1793545808000248.
Full textZhang, Zhang, Jing Pan, Yao Tang, Yue Xu, Lei Zhang, Yuan Gong, and Limin Tong. "Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips." Lab on a Chip 20, no. 14 (2020): 2572–79. http://dx.doi.org/10.1039/d0lc00178c.
Full textTrotta, Gianluca, Rebeca Martínez Vázquez, Annalisa Volpe, Francesco Modica, Antonio Ancona, Irene Fassi, and Roberto Osellame. "Disposable Optical Stretcher Fabricated by Microinjection Moulding." Micromachines 9, no. 8 (August 4, 2018): 388. http://dx.doi.org/10.3390/mi9080388.
Full textChang, Di, Shinya Sakuma, Kota Kera, Nobuyuki Uozumi, and Fumihito Arai. "Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip." Lab on a Chip 18, no. 8 (2018): 1241–49. http://dx.doi.org/10.1039/c7lc01245d.
Full textFaigle, Christoph, Franziska Lautenschläger, Graeme Whyte, Philip Homewood, Estela Martín-Badosa, and Jochen Guck. "A monolithic glass chip for active single-cell sorting based on mechanical phenotyping." Lab on a Chip 15, no. 5 (2015): 1267–75. http://dx.doi.org/10.1039/c4lc01196a.
Full textLeça, João M., Yannis Magalhães, Paulo Antunes, Vanda Pereira, and Marta S. Ferreira. "Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor." Sensors 22, no. 23 (December 1, 2022): 9377. http://dx.doi.org/10.3390/s22239377.
Full textKim, Soohong, Gabriel Dorlhiac, Rodrigo Cotrim Chaves, Mansi Zalavadia, and Aaron Streets. "Paper-thin multilayer microfluidic devices with integrated valves." Lab on a Chip 21, no. 7 (2021): 1287–98. http://dx.doi.org/10.1039/d0lc01217c.
Full textMarkovic, Tomislav, Juncheng Bao, Gertjan Maenhout, Ilja Ocket, and Bart Nauwelaers. "An Interdigital Capacitor for Microwave Heating at 25 GHz and Wideband Dielectric Sensing of nL Volumes in Continuous Microfluidics." Sensors 19, no. 3 (February 10, 2019): 715. http://dx.doi.org/10.3390/s19030715.
Full textKotz, Frederik, Markus Mader, Nils Dellen, Patrick Risch, Andrea Kick, Dorothea Helmer, and Bastian Rapp. "Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate." Micromachines 11, no. 9 (September 19, 2020): 873. http://dx.doi.org/10.3390/mi11090873.
Full textWang Yu, 王宇, 郝鹏 Hao Peng, 武俊峰 Wu Junfeng, 徐阳 Xu Yang, 邓永波 Deng Yongbo, and 吴一辉 Wu Yihui. "Optical Detection System of Centrifugal Microfluidic Chip for Biochemical Analysis." Laser & Optoelectronics Progress 52, no. 12 (2015): 121701. http://dx.doi.org/10.3788/lop52.121701.
Full textSu, Johnny P., Rahul Chandwani, Simon S. Gao, Alex D. Pechauer, Miao Zhang, Jie Wang, Yali Jia, David Huang, and Gangjun Liu. "Calibration of optical coherence tomography angiography with a microfluidic chip." Journal of Biomedical Optics 21, no. 08 (August 24, 2016): 1. http://dx.doi.org/10.1117/1.jbo.21.8.086015.
Full textYang, Tianhang, Jinxian Wang, Sining Lv, Songjing Li, and Gangyin Luo. "Thermodynamic Characterization of a Highly Transparent Microfluidic Chip with Multiple On-Chip Temperature Control Units." Crystals 12, no. 6 (June 17, 2022): 856. http://dx.doi.org/10.3390/cryst12060856.
Full textKim, Ka Ram, Hyeong Jin Chun, Kyung Won Lee, Kwan Young Jeong, Jae-Ho Kim, and Hyun C. Yoon. "Wash-free non-spectroscopic optical immunoassay by controlling retroreflective microparticle movement in a microfluidic chip." Lab on a Chip 19, no. 23 (2019): 3931–42. http://dx.doi.org/10.1039/c9lc00973f.
Full textNarayan, Advaith, Mingyang Cui, and J. Mark Meacham. "Using motile cells to characterize surface acoustic wave-based acoustofluidic devices." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A35. http://dx.doi.org/10.1121/10.0015453.
Full textElias, Jinane, Pascal Etienne, Sylvie Calas-Etienne, and Laurent Duffours. "Hybrid Organic-Inorganic photoresists, a promising class of materials for Optofluidic integration." EPJ Web of Conferences 215 (2019): 16001. http://dx.doi.org/10.1051/epjconf/201921516001.
Full textChen, Yih Yang, Pamuditha N. Silva, Abdullah Muhammad Syed, Shrey Sindhwani, Jonathan V. Rocheleau, and Warren C. W. Chan. "Clarifying intact 3D tissues on a microfluidic chip for high-throughput structural analysis." Proceedings of the National Academy of Sciences 113, no. 52 (December 12, 2016): 14915–20. http://dx.doi.org/10.1073/pnas.1609569114.
Full textSmeraldo, Alessio, Alfonso Maria Ponsiglione, Paolo Antonio Netti, and Enza Torino. "Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics." Biomedicines 9, no. 11 (October 27, 2021): 1551. http://dx.doi.org/10.3390/biomedicines9111551.
Full textZhu, Shu, Hailang Dai, Bei Jiang, Zhenhua Shen, and Xianfeng Chen. "Efficient microfluidic photocatalysis in a symmetrical metal-cladding waveguide." Physical Chemistry Chemical Physics 18, no. 6 (2016): 4585–88. http://dx.doi.org/10.1039/c5cp06813d.
Full textBruijns, Brigitte, Andrea Veciana, Roald Tiggelaar, and Han Gardeniers. "Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications." Biosensors 9, no. 3 (July 4, 2019): 85. http://dx.doi.org/10.3390/bios9030085.
Full textDawson, Harry, Jinane Elias, Pascal Etienne, and Sylvie Calas-Etienne. "The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip." Micromachines 12, no. 12 (November 28, 2021): 1467. http://dx.doi.org/10.3390/mi12121467.
Full textChen, Jackie, Weisong Wang, Ji Fang, and Kody Varahramyan. "Variable-focusing microlens with microfluidic chip." Journal of Micromechanics and Microengineering 14, no. 5 (March 18, 2004): 675–80. http://dx.doi.org/10.1088/0960-1317/14/5/003.
Full textWu, Yuanzi, Ye Jiang, Xiaoshan Zheng, Shasha Jia, Zhi Zhu, Bin Ren, and Hongwei Ma. "Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography." Royal Society Open Science 5, no. 4 (April 2018): 172034. http://dx.doi.org/10.1098/rsos.172034.
Full textAl-aqbi, Zaidon T., Salim Albukhaty, Ameerah M. Zarzoor, Ghassan M. Sulaiman, Khalil A. A. Khalil, Tareg Belali, and Mohamed T. A. Soliman. "A Novel Microfluidic Device for Blood Plasma Filtration." Micromachines 12, no. 3 (March 22, 2021): 336. http://dx.doi.org/10.3390/mi12030336.
Full text