Academic literature on the topic 'Microfluidic optical chip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microfluidic optical chip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microfluidic optical chip"
Qu, Jian, Yi Liu, Yan Li, Jinjian Li, and Songhe Meng. "Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions." Sensors 23, no. 5 (February 23, 2023): 2478. http://dx.doi.org/10.3390/s23052478.
Full textAdamopoulos, Christos, Asmaysinh Gharia, Ali Niknejad, Vladimir Stojanović, and Mekhail Anwar. "Microfluidic Packaging Integration with Electronic-Photonic Biosensors Using 3D Printed Transfer Molding." Biosensors 10, no. 11 (November 14, 2020): 177. http://dx.doi.org/10.3390/bios10110177.
Full textAlhalaili, Badriyah, Ileana Nicoleta Popescu, Carmen Otilia Rusanescu, and Ruxandra Vidu. "Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review." Sustainability 14, no. 19 (October 9, 2022): 12844. http://dx.doi.org/10.3390/su141912844.
Full textPaiè, Petra, Rebeca Martínez Vázquez, Roberto Osellame, Francesca Bragheri, and Andrea Bassi. "Microfluidic Based Optical Microscopes on Chip." Cytometry Part A 93, no. 10 (September 13, 2018): 987–96. http://dx.doi.org/10.1002/cyto.a.23589.
Full textOu, Xiaowen, Peng Chen, and Bi-Feng Liu. "Optical Technologies for Single-Cell Analysis on Microchips." Chemosensors 11, no. 1 (January 3, 2023): 40. http://dx.doi.org/10.3390/chemosensors11010040.
Full textKumar, Rahul, Hien Nguyen, Bruno Rente, Christabel Tan, Tong Sun, and Kenneth T. V. Grattan. "A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications." Micromachines 13, no. 8 (July 30, 2022): 1224. http://dx.doi.org/10.3390/mi13081224.
Full textKOU, Q. "On-chip optical components and microfluidic systems." Microelectronic Engineering 73-74 (June 2004): 876–80. http://dx.doi.org/10.1016/s0167-9317(04)00237-0.
Full textHoera, Christian, Andreas Kiontke, Maik Pahl, and Detlev Belder. "A chip-integrated optical microfluidic pressure sensor." Sensors and Actuators B: Chemical 255 (February 2018): 2407–15. http://dx.doi.org/10.1016/j.snb.2017.08.195.
Full textBissardon, Caroline, Xavier Mermet, Sophie Morales, Frédéric Bottausci, Marie Carriere, Florence Rivera, and Pierre Blandin. "Light sheet fluorescence microscope for microfluidic chip." EPJ Web of Conferences 238 (2020): 04005. http://dx.doi.org/10.1051/epjconf/202023804005.
Full textBaczyński, Szymon, Piotr Sobotka, Kasper Marchlewicz, Artur Dybko, and Katarzyna Rutkowska. "Low-cost, widespread and reproducible mold fabrication technique for PDMS-based microfluidic photonic systems." Photonics Letters of Poland 12, no. 1 (March 31, 2020): 22. http://dx.doi.org/10.4302/plp.v12i1.981.
Full textDissertations / Theses on the topic "Microfluidic optical chip"
Heinze, Brian Carl. "Lab-on-a-Chip Optical Immunosensor for Pathogen Detection." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/196023.
Full textMarchington, Robert F. "Applications of microfluidic chips in optical manipulation & photoporation." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1633.
Full textLucas, Lonnie J. "Detection of Light Scattering for Lab-On-A-Chip Immunoassays Using Optical Fibers." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/193897.
Full textBERRETTONI, CHIARA. "Design, implementation and characterization of an optoelectronic platform for the detection of immunosuppressants in transplanted patients by means of a microfluidic optical chip." Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1007099.
Full textKaylor, Sean C. "Development of a Low Cost Handheld Microfluidic Phosphate Colorimeter for Water Quality Analysis." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/147.
Full textHe, Yingning. "Lateral porous silicon membranes for planar microfluidic applications." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30255/document.
Full textLab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore properties, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane[TL1]. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip
Schembri, Florinda. "Experimental study for the control of two-phase microfluidic flows." Thesis, Universita' degli Studi di Catania, 2011. http://hdl.handle.net/10761/366.
Full textHarazim, Stefan M. "Rolled-up microtubes as components for Lab-on-a-Chip devices." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-100312.
Full textDie auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen. Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird. Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen
Fu, Yi. "Conception, fabrication et expérimentation de systèmes microfluidiques de CULTU." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1165/document.
Full textIn this PhD project, two in vitro cell culture devices were developed via microfabrication technologies, which provided entirely new levels of controls over the cell culture microenvironment. The applications of the developed devices in cancer and neurobiology researches were demonstrated, specifically for the fundamental study of cancer metastasis and neural axonal pathfinding. The microfluidic transmigration chip used microchannel structures to mimic the tissue capillaries along the path of cancer cell metastasis. The transparent optical qualities of the device allowed good observation of the deformation and migration of cells in the artificial capillaries. Results showed that deformation of the stiff cell nucleus were the most time-consuming steps during the transmigration process. The physical restrictions not only changed the morphology of the cells, but also significantly affect their migration profile. Further studies on the molecular contents and biological properties of the transmigrated cells showed that blocking the histone modifications by specific drug can inhibit the transmigration of cancer cells in the microchannel, which might have implications on cancer prevention and treatment. The microfluidic chip can also be used to evaluate cell deformability, which is a potential prognostic marker for cancer diagnosis. The neural culture chip integrated microfluidic cell culture and protein patterning techniques. The somas and axons of neurons cultured in the device can be polarized into different fluidically isolated environments for long period, and the extension of the axons can be guided by proteins immobilized on the glass substrate into specific patterns. The oriented axon growth can be further modulated by localized drug treatment. Studies on the underlying molecular mechanism revealed that these processes were closely associated with the proteins synthesized locally in the tips of growing axons
Shen, Li. "PORTABLE MULTIPLEXED OPTICAL DETECTION FOR POINT-OF-CARE." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367943692.
Full textBooks on the topic "Microfluidic optical chip"
Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. Institution of Engineering & Technology, 2016.
Find full textBook chapters on the topic "Microfluidic optical chip"
Rasooly, Avraham, Yordan Kostov, and Hugh A. Bruck. "Charged-Coupled Device (CCD) Detectors for Lab-on-a Chip (LOC) Optical Analysis." In Microfluidic Diagnostics, 365–85. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-134-9_23.
Full textWang, Xiaolin, Shuxun Chen, and Dong Sun. "Robot-Aided Micromanipulation of Biological Cells with Integrated Optical Tweezers and Microfluidic Chip." In Advanced Micro and Nanosystems, 393–416. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527690237.ch16.
Full textOsellame, R., R. Martinez Vazquez, C. Dongre, R. Dekker, H. J. W. M. Hoekstra, M. Pollnau, R. Ramponi, and G. Cerullo. "Femtosecond laser fabrication for the integration of optical sensors in microfluidic lab-on-chip devices." In Springer Series in Chemical Physics, 973–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_315.
Full textGai, Hongwei, Yongjun Li, and Edward S. Yeung. "Optical Detection Systems on Microfluidic Chips." In Microfluidics, 171–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/128_2011_144.
Full textSchmidt, Holger. "On-Chip Micro-optical Detection." In Encyclopedia of Microfluidics and Nanofluidics, 2513–18. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1152.
Full textSchmidt, Holger. "On-Chip Micro-optical Detection." In Encyclopedia of Microfluidics and Nanofluidics, 1–8. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1152-2.
Full textLucas, Lonnie J., and Jeong-Yeol Yoon. "On-Chip Detection Using Optical Fibers." In Encyclopedia of Microfluidics and Nanofluidics, 2484–502. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1145.
Full textLucas, Lonnie J., and Jeong-Yeol Yoon. "On-Chip Detection Using Optical Fibers." In Encyclopedia of Microfluidics and Nanofluidics, 1–19. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1145-2.
Full textIbarlucea, Bergoi, Julian Schütt, Larysa Baraban, Denys Makarov, Mariana Medina Sanchez, and Gianaurelio Cuniberti. "Real-Time Tracking of Individual Droplets in Multiphase Microfluidics." In Microfluidics and Nanofluidics - Fundamentals and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106796.
Full textKumar Chourasia, Ritesh, Nitesh K. Chourasia, Ankita Srivastava, and Narendra Bihari. "Photonic Nanostructured Bragg Fuel Adulteration Sensor." In Photonic Materials: Recent Advances and Emerging Applications, 237–64. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010015.
Full textConference papers on the topic "Microfluidic optical chip"
Zhang, Lei, and Limin Tong. "Microfluidic chip based microfiber sensors." In Optical Sensors. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/sensors.2015.ses2b.4.
Full textZhang, Lei, and Limin Tong. "Microfluidic chip based microfiber/nanofiber sensors." In 25th International Conference on Optical Fiber Sensors, edited by Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura, and Libo Yuan. SPIE, 2017. http://dx.doi.org/10.1117/12.2264873.
Full textChandrasekaran, Arvind, and Muthukumaran Packirisamy. "Integrated optical microfluidic lab-on-a-chip." In Photonics North 2008, edited by Réal Vallée, Michel Piché, Peter Mascher, Pavel Cheben, Daniel Côté, Sophie LaRochelle, Henry P. Schriemer, Jacques Albert, and Tsuneyuki Ozaki. SPIE, 2008. http://dx.doi.org/10.1117/12.807550.
Full textGhirardini, Lavinia, Anne-Laure Baudrion, Marco Monticelli, Daniela Petti, Giovanni Pellegrini, Lamberto Duò, Paolo Biagioni, Marco Finazzi, Pierre-Michel Adam, and Michele Celebrano. "Plasmon-enhanced second-harmonic sensing on a microfluidic chip." In Optical Sensors. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/sensors.2018.seth1a.2.
Full textRibeiro, A. R., I. Martinho, J. B. Tillak, I. Bernacka-Wojcik, D. Barata, P. A. S. Jorge, H. Águas, and A. G. Oliva. "Microfluidic chip for spectroscopic and refractometric analysis." In OFS2012 22nd International Conference on Optical Fiber Sensor, edited by Yanbiao Liao, Wei Jin, David D. Sampson, Ryozo Yamauchi, Youngjoo Chung, Kentaro Nakamura, and Yunjiang Rao. SPIE, 2012. http://dx.doi.org/10.1117/12.975248.
Full textSu, Bo, Yanqiu Li, and Hongguang Sun. "Novel fabrication technology of polydimethylsiloxane microfluidic chip." In 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems, edited by Sen Han, Tingwen Xing, Yanqiu Li, and Zheng Cui. SPIE, 2007. http://dx.doi.org/10.1117/12.782732.
Full textLeistiko, Otto. "Integrated microfluidic-optical detection system on a chip." In BiOS '97, Part of Photonics West, edited by Paul L. Gourley. SPIE, 1997. http://dx.doi.org/10.1117/12.269959.
Full textTonouchi, Masayoshi. "Terahertz microfluidic chip sensitivity-enhanced with a few arrays of meta atoms." In Optical Sensors. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/sensors.2018.seth4e.1.
Full textEspina Palanco, Marta, Darmin Catak, Rodolphe Marie, Marco Matteucci, Brian Bilenberg, Anders Kristensen, and Kirstine Berg-Sørensen. "Optical two-beam trap in a polymer microfluidic chip." In SPIE Nanoscience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2016. http://dx.doi.org/10.1117/12.2236465.
Full textJingjing, Zhao, and You Zheng. "Combining microfluidic chip and binary optical element for flow cytometry." In 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808676.
Full text