Academic literature on the topic 'Microfabricatin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microfabricatin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microfabricatin"
De Maria, C., L. Grassi, F. Vozzi, A. Ahluwalia, and G. Vozzi. "Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications." Rapid Prototyping Journal 20, no. 6 (October 20, 2014): 490–98. http://dx.doi.org/10.1108/rpj-03-2012-0022.
Full textDu, L. Q., C. Liu, H. J. Liu, J. Qin, N. Li, and Rui Yang. "Design and Fabrication of Micro Hot Embossing Mold for Microfluidic Chip Used in Flow Cytometry." Key Engineering Materials 339 (May 2007): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.339.246.
Full textHan, Lei, Pingmei Ming, Shen Niu, Guangbin Yang, Dongdong Li, and Kuaile Cheng. "Microfabricating Mirror-like Surface Precision Micro-Sized Amorphous Alloy Structures Using Jet-ECM Process." Micromachines 15, no. 3 (March 11, 2024): 375. http://dx.doi.org/10.3390/mi15030375.
Full textFolch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. "Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications." Journal of Biomechanical Engineering 121, no. 1 (February 1, 1999): 28–34. http://dx.doi.org/10.1115/1.2798038.
Full textBanerjee, Arunav S., Richard Blaikie, and Wen Hui Wang. "Microfabrication Process for XYZ Stage-Needle Assembly for Cellular Delivery and Surgery." Materials Science Forum 700 (September 2011): 195–98. http://dx.doi.org/10.4028/www.scientific.net/msf.700.195.
Full textPARK, W. B., J. H. CHOI, C. W. PARK, G. M. KIM, H. S. SHIN, C. N. CHU, and B. H. KIM. "FABRICATION OF MICRO PROBE-TYPE ELECTRODES FOR MICROELECTRO-CHEMICAL MACHINING USING MICROFABRICATION." International Journal of Modern Physics B 24, no. 15n16 (June 30, 2010): 2639–44. http://dx.doi.org/10.1142/s0217979210065398.
Full textLiu, Yue, Megan Chesnut, Amy Guitreau, Jacob Beckham, Adam Melvin, Jason Eades, Terrence R. Tiersch, and William Todd Monroe. "Microfabrication of low-cost customisable counting chambers for standardised estimation of sperm concentration." Reproduction, Fertility and Development 32, no. 9 (2020): 873. http://dx.doi.org/10.1071/rd19154.
Full textAlvarez-Escobar, Marta, Sidónio C. Freitas, Derek Hansford, Fernando J. Monteiro, and Alejandro Pelaez-Vargas. "Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces." International Journal of Dentistry 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/4219625.
Full textStarodubov, Andrey, Roman Torgashov, Viktor Galushka, Anton Pavlov, Vladimir Titov, Nikita Ryskin, Anand Abhishek, and Niraj Kumar. "Microfabrication, Characterization, and Cold-Test Study of the Slow-Wave Structure of a Millimeter-Band Backward-Wave Oscillator with a Sheet Electron Beam." Electronics 11, no. 18 (September 9, 2022): 2858. http://dx.doi.org/10.3390/electronics11182858.
Full textCreff, Justine, Laurent Malaquin, and Arnaud Besson. "In vitro models of intestinal epithelium: Toward bioengineered systems." Journal of Tissue Engineering 12 (January 2021): 204173142098520. http://dx.doi.org/10.1177/2041731420985202.
Full textDissertations / Theses on the topic "Microfabricatin"
Feng, Chunhua. "Microfabrication-compatible synthesis strategies for nanoscale electrocatalysts in microfabricated fuel cell applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20FENG.
Full textGrebille, Bénédicte. "Photopolymérisation radicalaire contrôlée par ATRP : études mécanistiques, applications en sciences des matériaux et perspectives en microfabrication." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0017.
Full textIn the early 20th century, the physico-chemist Giacomo Luigi Ciamician, highlighted the benefits of using light as a suitable energy source for chemical reactions. At the end of this same century, the discovery of controlled radical polymerization, in particular ATRP (Atom Transfer Radical Polymerization), marked a major advance in polymer chemistry. This technique has been widely developed and used in a variety of fields, including surface functionalization through Surface Initiated ATRP (SI-ATRP), with applications ranging from biology to materials engineering. The main aim of this thesis is to explore the use of photoinduced ATRP in microprinting. For this purpose, a new multicomponent system for photoinduced ATRP has been developed and studied in detail from a physicochemical point of view. The thorough understanding of each component impact of the system has enabled to reach highly controlled polymerization under a wide variety of conditions, including in the open air. Moreover, this system, which includes a photosensitizer capable of two-photon absorption, has been used for a variety of purposes. It has been used to perform surface-initiated ATRP both in an inert atmosphere and in the presence of dioxygen. The optimization of the surface functionalization technique was used for microprinting. Furthermore, this multicomponent system facilitated the synthesis, by photoinduced ATRP from a new macrophotoinitiator, of water-soluble photosensitizers with interesting biphotonic absorption properties. This family of macromolecules has proved to be effective in photoinitiating emulsion polymerization, paving the way for two-photon photoinduced emulsion polymerization and potentially also to hydrogels microprinting
Altay, Gizem. "Towards the development of biomimetic in vitro models of intestinal epithelium derived from intestinal organoids." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/664864.
Full textEl epitelio intestinal es un tejido altamente especializado, organizado en unidades de criptas y vellosidades que son relevantes para sus eficaces funciones de barrera y absorción de nutrientes. En las unidades de criptas residen las células madre intestinales (ISC) proliferativas que se dividen y diferencian mientras migran a lo largo de las vellosidades, las cuales generan el epitelio maduro. En el epitelio maduro, las ISC y las células proliferativas se localizan en las criptas y las células absorbentes y secretoras diferenciadas en las vellosidades. La proliferación, migración y diferenciación de las ISC se rigen por los gradientes químicos espaciales altamente controlados de los factores de nicho de la ISC; Moduladores de la vía de bone morphogenic protein (BMP), wingless/Int (Wnt) y epidermal growth factor (EGF). El modelado experimental de la biología y la fisiología del epitelio intestinal está limitado debido a la falta de plataformas in vitro que recapitulan estos aspectos clave del epitelio del intestino delgado: sus distintas poblaciones celulares, la arquitectura 3D y los gradientes de factores bioquímicos de nicho ISC a lo largo del eje cripta-vellosidad. Aquí, describimos el desarrollo de modelos in vitro de epitelio intestinal obtenidos de criptas derivadas de organoides intestinales. En primer lugar, presentamos un método para obtener monocapas epiteliales intestinales 2D con lumen accesible y función de barrera fisiológica. A continuación, describimos el desarrollo de andamios biomiméticos 3D similares a vellosidades en hidrogeles de diacrilato de polietilenglicol (PEGDA) utilizando un enfoque fotolitográfico simple y rentable. Demostramos que nuestra plataforma de vellosidades sintéticas apoya la formación de monocapas epiteliales de células epiteliales intestinales derivadas de organoides. Finalmente, describimos métodos para crear gradientes espaciotemporales de factores nicho bioquímicos ISC en hidrogeles 3D similares a vellosidades y demostramos que estos gradientes se pueden usar para compartimentar las células epiteliales diferenciadas. La plataforma 3D que recrea las vellosidades intestinalesmejora los modelos actuales al proporcionar a las células las señales topográficas y mecánicas y los gradientes bioquímicos fisiológicamente representativos. Debido a su utilidad, esta plataforma puede encontrar innumerables aplicaciones. Puede ser utilizada para la comprensión de la biología básica del epitelio intestinal. Además, se puede utilizar para cultivar células madre intestinales humanas que permitan la detección de nuevas terapias y el modelado de enfermedades.
Caballero, Lucas Francesc. "Z-scan methods for ultrashort pulsed laser microprocessing of transparent materials." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668185.
Full textL’ús de làsers d’impulsos ultracurts ha rebut atenció recentment degut al reconeixement amb el Premi Nobel de Física de l’any 2018 a la tècnica que en permet la seva generació. Les seves àrees d’aplicació encara no han estat completament explorades, però les seves possibilitats per accedir al món microscòpic són considerades prometedores. Seguint aquest esperit, l’objectiu d’aquesta tesi és proposar i implementar solucions viables als reptes relacionats amb la microfabricació de materials amb impulsos làser ultracurts, específicament l’ablació làser de polímers transparents amb resolucions espacials que transcendeixin les limitacions de definició associades a la difracció de la llum. INTRODUCCIÓ I OBJECTIUS: Aquest capítol descriu les tècniques de microfabricació més significatives, centrant-se en els mètodes làser. Degut al paper clau del làser en aquesta tesi, es fa una descripció breu de la interacció entre la radiació làser i la matèria. Els objectius plantejats completen aquest primer capítol. EXPERIMENTAL: En aquest apartat es presenta una descripció dels muntatges experimentals amb sistemes làser de duració ultracurta, els mètodes i els materials emprats durant les proves que constitueixen la recerca i que serveixen de base per a la presentació del mètode d’enfocament z-scan. MÈTODE D’ENFOCAMENT Z-SCAN: Els resultats obtinguts amb la tècnica proposada d’enfocament per z-scan són presentats aquí. El tema central és el desenvolupament i caracterització d’aquesta tècnica com a mètode per l’ablació superficial de materials transparents amb impulsos làser ultracurts. La implementació exitosa de l’ablació superficial del polimetilmetacrilat (PMMA) amb elevada resolució espacial demostra la viabilitat de l’estratègia proposada per enfocar amb precisió un feix làser a la superfície de materials transparents. APLICACIONS PER AL MICROPROCESSAMENT LÀSER DE MATERIALS: La implementació de la tècnica desenvolupada d’enfocament per z-scan s’ha pogut traslladar al microprocessament de materials amb làser en diverses aplicacions com la irradiació de polímers biodegradables per a la producció de forats profunds en àcid polílàctic (PLA), la seva influència en la biodegradabilitat de l’àcid polílàctic-co-glicòlic (PLGA), la perforació de fuites en bosses de polipropilè d’ús mèdic, i la fabricació de guies microfluídiques per la impressió de línies conductores. Conclusions: L’últim capítol resumeix els resultats més rellevants i els principals assoliments.
Cannon, Andrew Hampton. "Unconventional Microfabrication Using Polymers." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19845.
Full textFlorian, Baron Camilo. "Laser direct-writing for microfabrication." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400403.
Full textLa fabricació digital de dispositius tecnològics requereix el desenvolupament de noves i millors tècniques per al microprocessament de materials que al mateix temps siguin compatibles amb mètodes de producció en sèrie a gran escala com el roll-to-roll processing. Aquestes tècniques han de complir certs requisits relacionats amb la possibilitat de realitzar canvis de disseny ràpids durant el procés de fabricació, alta velocitat de processament, i al mateix temps permetre la producció de motius de forma controlada amb altes resolucions espacials. En la present tesi es proposen i implementen solucions viables a alguns dels reptes presents a la microfabricació amb làser tant substractiva com additiva. D'una banda, es presenta un nou mètode d'enfocament del feix làser sobre la mostra per l'ablació superficial de materials transparents que permet obtenir resolucions espacials que superen el límit de difracció del dispositiu òptic. D'altra banda, es duu a terme un estudi de la dinàmica de la impressió de líquids mitjançant làser a alta velocitat, de gran interès de cara a la implementació industrial de la tècnica. A més, es presenten estratègies d'impressió de tintes conductores amb l'objectiu de produir línies contínues amb alta qualitat d'impressió. Finalment s'inclouen dues propostes que són producte de la combinació d’ambues tècniques, la impressió de líquids i l'ablació amb làser.
Wang, Weihua. "Tools for flexible electrochemical microfabrication /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/9854.
Full textBarham, Oliver M. "Microfabricated Bulk Piezoelectric Transformers." Thesis, University of Maryland, College Park, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10615552.
Full textPiezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton’s Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm
3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (± 0.1), efficiency of 33 (± 0.1)% and output power density of 51.3 (± 4.0)W cm
-3 (for output power of80 (± 6)mW) at 1M? load, for an input voltage range of 3V-6V (± one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm
3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application
Mehregany, Mehran. "Microfabricated silicon electric mechanisms." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14042.
Full textIncludes bibliographical references (leaves 151-156).
by Mehran Mehregany.
Ph.D.
Griffith, Alun Wyn. "Applications of microfabrication in biosensor technology." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361768.
Full textBooks on the topic "Microfabricatin"
Franssila, Sami. Introduction to Microfabrication. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781119990413.
Full textSugioka, Koji, Michel Meunier, and Alberto Piqué, eds. Laser Precision Microfabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4.
Full textChakraborty, Suman, ed. Microfluidics and Microfabrication. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1543-6.
Full textMichel, Meunier, Piqué Alberto, and SpringerLink (Online service), eds. Laser Precision Microfabrication. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textNarayanan, Sundararajan, ed. Microfabrication for microfluidics. Boston: Artech House, 2010.
Find full textFranssila, Sami. Introduction to Microfabrication. New York: John Wiley & Sons, Ltd., 2005.
Find full textChakraborty, Suman. Microfluidics and Microfabrication. Boston, MA: Springer Science+Business Media, LLC, 2010.
Find full textJ, Jackson Mark, ed. Microfabrication and nanomanufacturing. Boca Raton, FL: Taylor & Francis, 2005.
Find full textKordal, Richard, Arthur Usmani, and Wai Tak Law, eds. Microfabricated Sensors. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0815.
Full textNassar, Raja. Modelling of Microfabrication Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Find full textBook chapters on the topic "Microfabricatin"
Adams, Thomas M., and Richard A. Layton. "Microfabrication laboratories." In Introductory MEMS, 371–403. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09511-0_13.
Full textLeitão, Diana C., José Pedro Amaral, Susana Cardoso, and Càndid Reig. "Microfabrication Techniques." In Giant Magnetoresistance (GMR) Sensors, 31–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_2.
Full textShoji, Satoru, and Kyoko Masui. "Nano-/Microfabrication." In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_108-2.
Full textJoye, Colin D., Alan M. Cook, and Diana Gamzina. "Microfabrication Technologies." In Advances in Terahertz Source Technologies, 701–39. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003459675-26.
Full textJohnstone, Robert W., and M. Parameswaran. "Microfabrication Processes." In An Introduction to Surface-Micromachining, 9–28. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4020-8021-0_2.
Full textShoji, Satoru, and Kyoko Masui. "Nano-/Microfabrication." In Encyclopedia of Polymeric Nanomaterials, 1311–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_108.
Full textOno, Takahito, and Masayoshi Esashi. "Microfabricated Probe Technology." In Encyclopedia of Nanotechnology, 2167–78. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_247.
Full textJuarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Microfabricated Probe Technology." In Encyclopedia of Nanotechnology, 1406–15. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_247.
Full textBaborowski, J. "Microfabrication of Piezoelectric MEMS." In Electroceramic-Based MEMS, 325–59. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-23319-9_13.
Full textQin, Dong, Younan Xia, John A. Rogers, Rebecca J. Jackman, Xiao-Mei Zhao, and George M. Whitesides. "Microfabrication, Microstructures and Microsystems." In Topics in Current Chemistry, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69544-3_1.
Full textConference papers on the topic "Microfabricatin"
Levitan, Jeremy A., Dan Good, Michael J. Sinclair, and Joseph M. Jacobson. "Creation of Nanometer-Sized Features in Polysilicon Using Fusing." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23858.
Full textPark, Daniel S., Saade Bou-Mikael, Sean King, Karsten E. Thompson, Clinton S. Willson, and Dimitris E. Nikitopoulos. "Design and Fabrication of Rock-Based Micromodel." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88501.
Full textKandra, Deepak, and Ram V. Devireddy. "On the Possible Application of a Microscale Thermocouple to Measure Intercellular Ice Formation in Cells Embedded in an Extracellular Matrix." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60728.
Full textDemiri, S., and S. Boedo. "Clearance Effects on the Impact Behavior of Large Aspect Ratio Silicon Journal Microbearings." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41189.
Full textCarretero, J. A., and K. S. Breuer. "Measurement and Modeling of the Flow Characteristics of Micro Disc Valves." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1120.
Full textHsu, C. P., N. E. Jewell-Larsen, A. C. Rollins, I. A. Krichtafovitch, S. W. Montgomery, J. T. Dibene, and A. V. Mamishev. "Miniaturization of Electrostatic Fluid Accelerators." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13990.
Full textWang, Yaqiang, and Massood Tabib-Azar. "Fabrication and Characterization of Evanescent Microwave Probes Compatible With Atomic Force Microscope for Scanning Near-Field Microscopy." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33291.
Full textKo, Jong Soo, Young-Ho Cho, Byung Man Kwak, and Kwanhum Park. "Design and Fabrication of Piezoresistive Cantilever Microaccelerometer Arrays With a Symmetrically Bonded Proof-Mass." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1267.
Full textShao, Zhanjie, Carolyn L. Ren, and Gerry Schneider. "Control of Laminar Flow and Mass Transport in Crossing Linked Microchannels for Micro Fabrication." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75021.
Full textDowling, Karen M., Ateeq J. Suria, Yoonjin Won, Ashwin Shankar, Hyoungsoon Lee, Mehdi Asheghi, Kenneth E. Goodson, and Debbie G. Senesky. "Inductive Coupled Plasma Etching of High Aspect Ratio Silicon Carbide Microchannels for Localized Cooling." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48409.
Full textReports on the topic "Microfabricatin"
Woodard, David W. Microfabrication Technology for Photonics. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada225428.
Full textJau, Yuan-Yu. Microfabricated Waveguide Atom Traps. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396077.
Full textCowan, Benjamin M. Microfabrication of Laser-Driven Accelerator Structures. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/812999.
Full textJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/791322.
Full textJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/791324.
Full textBauer, Todd, Adam Jones, Tony Lentine, John Mudrick, Murat Okandan, and Arun Rodrigues. Trends in Microfabrication Capabilities & Device Architectures. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1184366.
Full textBauer, Todd, Adam Jones, Anthony L. Lentine, John Mudrick, Murat Okandan, and Arun F. Rodrigues. Trends in Microfabrication Capabilities & Device Architectures. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1192538.
Full textJoye, Colin D., Alan M. Cook, Jeffrey P. Calame, David K. Abe, Khanh T. Nguyen, Edward L. Wright, Jeremy M. Hanna, Igor A. Chernyavskiy, and Baruch Levush. Microfabrication Techniques for Millimeter Wave Vacuum Electronics. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ad1004171.
Full textMastrangelo, C. H. Microfabrication Techniques for Plastic Microelectromechanical Systems (MEMS). Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada420836.
Full textLawandy, N. M. Laser Microfabrication in Glasses: Mechanisms and Applications. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada376443.
Full text