Academic literature on the topic 'Microfabricati'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microfabricati.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microfabricati"
De Maria, C., L. Grassi, F. Vozzi, A. Ahluwalia, and G. Vozzi. "Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications." Rapid Prototyping Journal 20, no. 6 (October 20, 2014): 490–98. http://dx.doi.org/10.1108/rpj-03-2012-0022.
Full textDu, L. Q., C. Liu, H. J. Liu, J. Qin, N. Li, and Rui Yang. "Design and Fabrication of Micro Hot Embossing Mold for Microfluidic Chip Used in Flow Cytometry." Key Engineering Materials 339 (May 2007): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.339.246.
Full textBanerjee, Arunav S., Richard Blaikie, and Wen Hui Wang. "Microfabrication Process for XYZ Stage-Needle Assembly for Cellular Delivery and Surgery." Materials Science Forum 700 (September 2011): 195–98. http://dx.doi.org/10.4028/www.scientific.net/msf.700.195.
Full textFolch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. "Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications." Journal of Biomechanical Engineering 121, no. 1 (February 1, 1999): 28–34. http://dx.doi.org/10.1115/1.2798038.
Full textPARK, W. B., J. H. CHOI, C. W. PARK, G. M. KIM, H. S. SHIN, C. N. CHU, and B. H. KIM. "FABRICATION OF MICRO PROBE-TYPE ELECTRODES FOR MICROELECTRO-CHEMICAL MACHINING USING MICROFABRICATION." International Journal of Modern Physics B 24, no. 15n16 (June 30, 2010): 2639–44. http://dx.doi.org/10.1142/s0217979210065398.
Full textStarodubov, Andrey, Roman Torgashov, Viktor Galushka, Anton Pavlov, Vladimir Titov, Nikita Ryskin, Anand Abhishek, and Niraj Kumar. "Microfabrication, Characterization, and Cold-Test Study of the Slow-Wave Structure of a Millimeter-Band Backward-Wave Oscillator with a Sheet Electron Beam." Electronics 11, no. 18 (September 9, 2022): 2858. http://dx.doi.org/10.3390/electronics11182858.
Full textLiu, Yue, Megan Chesnut, Amy Guitreau, Jacob Beckham, Adam Melvin, Jason Eades, Terrence R. Tiersch, and William Todd Monroe. "Microfabrication of low-cost customisable counting chambers for standardised estimation of sperm concentration." Reproduction, Fertility and Development 32, no. 9 (2020): 873. http://dx.doi.org/10.1071/rd19154.
Full textAlvarez-Escobar, Marta, Sidónio C. Freitas, Derek Hansford, Fernando J. Monteiro, and Alejandro Pelaez-Vargas. "Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces." International Journal of Dentistry 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/4219625.
Full textCreff, Justine, Laurent Malaquin, and Arnaud Besson. "In vitro models of intestinal epithelium: Toward bioengineered systems." Journal of Tissue Engineering 12 (January 2021): 204173142098520. http://dx.doi.org/10.1177/2041731420985202.
Full textYang, Jian Zhong, Li Chao Pan, C. L. Kang, Gang Liu, Hui Juan Li, Z. You, D. H. Ren, and Y. C. Tian. "Advance of the Micro-Magnetometer MEMSMag Research." Advanced Materials Research 60-61 (January 2009): 241–45. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.241.
Full textDissertations / Theses on the topic "Microfabricati"
Feng, Chunhua. "Microfabrication-compatible synthesis strategies for nanoscale electrocatalysts in microfabricated fuel cell applications /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20FENG.
Full textCannon, Andrew Hampton. "Unconventional Microfabrication Using Polymers." Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19845.
Full textBarham, Oliver M. "Microfabricated Bulk Piezoelectric Transformers." Thesis, University of Maryland, College Park, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10615552.
Full textPiezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton’s Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm
3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (± 0.1), efficiency of 33 (± 0.1)% and output power density of 51.3 (± 4.0)W cm
-3 (for output power of80 (± 6)mW) at 1M? load, for an input voltage range of 3V-6V (± one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm
3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application
Mehregany, Mehran. "Microfabricated silicon electric mechanisms." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14042.
Full textIncludes bibliographical references (leaves 151-156).
by Mehran Mehregany.
Ph.D.
Florian, Baron Camilo. "Laser direct-writing for microfabrication." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400403.
Full textLa fabricació digital de dispositius tecnològics requereix el desenvolupament de noves i millors tècniques per al microprocessament de materials que al mateix temps siguin compatibles amb mètodes de producció en sèrie a gran escala com el roll-to-roll processing. Aquestes tècniques han de complir certs requisits relacionats amb la possibilitat de realitzar canvis de disseny ràpids durant el procés de fabricació, alta velocitat de processament, i al mateix temps permetre la producció de motius de forma controlada amb altes resolucions espacials. En la present tesi es proposen i implementen solucions viables a alguns dels reptes presents a la microfabricació amb làser tant substractiva com additiva. D'una banda, es presenta un nou mètode d'enfocament del feix làser sobre la mostra per l'ablació superficial de materials transparents que permet obtenir resolucions espacials que superen el límit de difracció del dispositiu òptic. D'altra banda, es duu a terme un estudi de la dinàmica de la impressió de líquids mitjançant làser a alta velocitat, de gran interès de cara a la implementació industrial de la tècnica. A més, es presenten estratègies d'impressió de tintes conductores amb l'objectiu de produir línies contínues amb alta qualitat d'impressió. Finalment s'inclouen dues propostes que són producte de la combinació d’ambues tècniques, la impressió de líquids i l'ablació amb làser.
Jeffery, Nicholas Toby. "PET radiochemistry on microfabricated devices." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420892.
Full textVelásquez, García Luis Fernando 1976. "A microfabricated colloid thruster array." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/82201.
Full textLubratt, Mark Paul. "A voltage-tunable microfabricated accelerometer." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/37497.
Full textHarris, Robert Michael. "Geometric simulation of microfabricated structures." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11842.
Full textIncludes bibliographical references (p. 295-302).
Robert Michael Harris.
Ph.D.
Wang, Weihua. "Tools for flexible electrochemical microfabrication /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/9854.
Full textBooks on the topic "Microfabricati"
Kordal, Richard, Arthur Usmani, and Wai Tak Law, eds. Microfabricated Sensors. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0815.
Full textFranssila, Sami. Introduction to Microfabrication. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9781119990413.
Full textSugioka, Koji, Michel Meunier, and Alberto Piqué, eds. Laser Precision Microfabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4.
Full textChakraborty, Suman, ed. Microfluidics and Microfabrication. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1543-6.
Full textJ, Jackson Mark, ed. Microfabrication and nanomanufacturing. Boca Raton, FL: Taylor & Francis, 2005.
Find full textFranssila, Sami. Introduction to Microfabrication. New York: John Wiley & Sons, Ltd., 2005.
Find full textChakraborty, Suman. Microfluidics and Microfabrication. Boston, MA: Springer Science+Business Media, LLC, 2010.
Find full textNarayanan, Sundararajan, ed. Microfabrication for microfluidics. Boston: Artech House, 2010.
Find full textIntroduction to microfabrication. 2nd ed. Chichester, West Sussex, England: John Wiley & Sons, 2010.
Find full textMichel, Meunier, Piqué Alberto, and SpringerLink (Online service), eds. Laser Precision Microfabrication. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textBook chapters on the topic "Microfabricati"
Adams, Thomas M., and Richard A. Layton. "Microfabrication laboratories." In Introductory MEMS, 371–403. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09511-0_13.
Full textLeitão, Diana C., José Pedro Amaral, Susana Cardoso, and Càndid Reig. "Microfabrication Techniques." In Giant Magnetoresistance (GMR) Sensors, 31–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_2.
Full textShoji, Satoru, and Kyoko Masui. "Nano-/Microfabrication." In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_108-2.
Full textJohnstone, Robert W., and M. Parameswaran. "Microfabrication Processes." In An Introduction to Surface-Micromachining, 9–28. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4020-8021-0_2.
Full textShoji, Satoru, and Kyoko Masui. "Nano-/Microfabrication." In Encyclopedia of Polymeric Nanomaterials, 1311–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_108.
Full textOno, Takahito, and Masayoshi Esashi. "Microfabricated Probe Technology." In Encyclopedia of Nanotechnology, 2167–78. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_247.
Full textJuarez-Martinez, Gabriela, Alessandro Chiolerio, Paolo Allia, Martino Poggio, Christian L. Degen, Li Zhang, Bradley J. Nelson, et al. "Microfabricated Probe Technology." In Encyclopedia of Nanotechnology, 1406–15. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_247.
Full textBaborowski, J. "Microfabrication of Piezoelectric MEMS." In Electroceramic-Based MEMS, 325–59. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-23319-9_13.
Full textJiménez-Martínez, Ricardo, and Svenja Knappe. "Microfabricated Optically-Pumped Magnetometers." In Smart Sensors, Measurement and Instrumentation, 523–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34070-8_17.
Full textQin, Dong, Younan Xia, John A. Rogers, Rebecca J. Jackman, Xiao-Mei Zhao, and George M. Whitesides. "Microfabrication, Microstructures and Microsystems." In Topics in Current Chemistry, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69544-3_1.
Full textConference papers on the topic "Microfabricati"
Levitan, Jeremy A., Dan Good, Michael J. Sinclair, and Joseph M. Jacobson. "Creation of Nanometer-Sized Features in Polysilicon Using Fusing." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23858.
Full textPark, Daniel S., Saade Bou-Mikael, Sean King, Karsten E. Thompson, Clinton S. Willson, and Dimitris E. Nikitopoulos. "Design and Fabrication of Rock-Based Micromodel." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88501.
Full textKandra, Deepak, and Ram V. Devireddy. "On the Possible Application of a Microscale Thermocouple to Measure Intercellular Ice Formation in Cells Embedded in an Extracellular Matrix." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60728.
Full textDemiri, S., and S. Boedo. "Clearance Effects on the Impact Behavior of Large Aspect Ratio Silicon Journal Microbearings." In STLE/ASME 2010 International Joint Tribology Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ijtc2010-41189.
Full textCarretero, J. A., and K. S. Breuer. "Measurement and Modeling of the Flow Characteristics of Micro Disc Valves." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1120.
Full textShao, Zhanjie, Carolyn L. Ren, and Gerry Schneider. "Control of Laminar Flow and Mass Transport in Crossing Linked Microchannels for Micro Fabrication." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75021.
Full textHsu, C. P., N. E. Jewell-Larsen, A. C. Rollins, I. A. Krichtafovitch, S. W. Montgomery, J. T. Dibene, and A. V. Mamishev. "Miniaturization of Electrostatic Fluid Accelerators." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13990.
Full textKo, Jong Soo, Young-Ho Cho, Byung Man Kwak, and Kwanhum Park. "Design and Fabrication of Piezoresistive Cantilever Microaccelerometer Arrays With a Symmetrically Bonded Proof-Mass." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1267.
Full textWang, Yaqiang, and Massood Tabib-Azar. "Fabrication and Characterization of Evanescent Microwave Probes Compatible With Atomic Force Microscope for Scanning Near-Field Microscopy." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33291.
Full textMu¨ller, Norbert, and Luc G. Fre´chette. "Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39628.
Full textReports on the topic "Microfabricati"
Jau, Yuan-Yu. Microfabricated Waveguide Atom Traps. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1396077.
Full textWoodard, David W. Microfabrication Technology for Photonics. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada225428.
Full textJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/791322.
Full textJames C. Lund. Microfabricated Solid State Neutron Generators. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/791324.
Full textSpahn, Olga Blum, Adam M. Rowen, Michael Joseph Cich, Gregory Merwin Peake, Christian L. Arrington, Thomas J. Nash, John Frederick Klem, and Dustin Heinz Romero. Microfabricated wire arrays for Z-pinch. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/945909.
Full textBandyopadhyay, P. R. A Microfabricated Surface for Turbulence Control. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada637044.
Full textPitts, W. K., K. M. Walsh, H. L. Cox, and Jr. Development of Microfabricated Radiation Sensor Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada392846.
Full textCowan, Benjamin M. Microfabrication of Laser-Driven Accelerator Structures. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/812999.
Full textRevelle, Melissa. Microfabricated Devices and Ion Trapping Capabilities. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1876626.
Full textSASAKI, DARRYL Y., JULIE A. LAST, BRUCE BONDURANT, TINA A. WAGGONER, C. JEFFREY BRINKER, SHANALYN A. KEMME, JOEL R. WENDT, et al. Nanostructured Materials Integrated in Microfabricated Optical Devices. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/808600.
Full text