Academic literature on the topic 'Microencapsulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microencapsulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microencapsulation"
Perez-Palacios, Trinidad, Jorge Ruiz-Carrascal, Juan Carlos Solomando, Francisco de-la-Haba, Abraham Pajuelo, and Teresa Antequera. "Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment." Foods 11, no. 20 (October 20, 2022): 3291. http://dx.doi.org/10.3390/foods11203291.
Full textOnah, I. A., K. C. Ofokansi, D. C. Odimegwu, and E. B. Onuigbo. "Efficiency of Polymer-silica Blends in the Microencapsulation of Yellow Fever Virus Vaccine." Science View Journal 4, no. 2 (September 30, 2023): 318–25. http://dx.doi.org/10.55989/klya6292.
Full textLitwin, Allen, Michael Flanagan, and J. Gabriel Michael. "Microencapsulation." BioDrugs 9, no. 4 (1998): 261–70. http://dx.doi.org/10.2165/00063030-199809040-00001.
Full textGouin, Sébastien. "Microencapsulation." Trends in Food Science & Technology 15, no. 7-8 (July 2004): 330–47. http://dx.doi.org/10.1016/j.tifs.2003.10.005.
Full textHardi, Jaya, Dian Citra, Syamsuddin, and Dwi Juli Pusptasari. "Efisiensi Mikroenkapsulasi Ekstrak Kulit Buah Naga Super Merah (Hylocereus costaricensis) Tersalut Maltodekstrin Berdasarkan Kecepatan Pengadukan." KOVALEN: Jurnal Riset Kimia 6, no. 1 (April 18, 2020): 1–8. http://dx.doi.org/10.22487/kovalen.2020.v6.i1.12647.
Full textTaunton-Rigby, Alison. "Microencapsulation Clarification." Nature Biotechnology 4, no. 5 (May 1986): 462. http://dx.doi.org/10.1038/nbt0586-462a.
Full textRosenberg, Moshe, Yael Rosenberg, and Jing Zhang. "Microencapsulation of a Model Oil in Wall System Consisting of Wheat Proteins Isolate (WHPI) and Lactose." Applied Sciences 8, no. 10 (October 16, 2018): 1944. http://dx.doi.org/10.3390/app8101944.
Full textTomaro-Duchesneau, Catherine, Shyamali Saha, Meenakshi Malhotra, Imen Kahouli, and Satya Prakash. "Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions." Journal of Pharmaceutics 2013 (December 5, 2013): 1–19. http://dx.doi.org/10.1155/2013/103527.
Full textMulyadi, Naomi M., Tri D. Widyaningsih, Novita Wijayanti, Renny Indrawati, Heriyanto Heriyanto, and Leenawaty Limantara. "Microencapsulation of Kabocha Pumpkin Carotenoids." International Journal of Chemical Engineering and Applications 8, no. 6 (December 2017): 381–86. http://dx.doi.org/10.18178/ijcea.2017.8.6.688.
Full textMohd Yusop, Fatin Hafizah, Shareena Fairuz Abd Manaf, and Fazlena Hamzah. "Preservation of Bioactive Compound via Microencapsulation." Chemical Engineering Research Bulletin 19 (September 10, 2017): 50. http://dx.doi.org/10.3329/cerb.v19i0.33796.
Full textDissertations / Theses on the topic "Microencapsulation"
Caserta, Laura. "Microencapsulation pour l'autoréparation." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30037.
Full textA material that could repair itself, a crack that can heal itself after an impact, like a wound on the body. The concept of self-healing described is not science fiction created by the crazy imagination of researchers. Recent studies show otherwise. The French company CATALYSE has developed a process of self-healing through the integration of microparticles containing an active liquid ingredient that is released during a crack in the material. The liquid monomer fills the crack, polymerizes and prevents further spread. The innovation of CATALYSE was to imagine a self-repairing formula, which polymerizes when exposed to the outside of the self-contained environment. This includes light (UV or visible rays), oxygen or humidity. The corresponding monomers to be encapsulated are respectively an acrylate (for example TMPTA), an epoxy (mixed with an adapted photoinitiator), linseed oil or diisocyanate (for example an isocyanine trimer or hexamethylene diisocyanate). The encapsulations of these four compounds were studied in parallel and the results are explained in chapters 2, 3 and 4 of this document. The TMPTA and linseed oil are both encapsulated by the sol-gel process, the epoxy and isocyanate, by interfacial polycondensation. The results vary from one monomer to another but the overall results are conclusive. They show that it is possible to obtain a high percentage of the active ingredient and that the particles stay stable over time. Following the bursting of such capsules, the monomer polymerizes and ensures the self-healing process
Caserta, Laura. "Microencapsulation pour l'autoréparation." Electronic Thesis or Diss., Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30037.
Full textA material that could repair itself, a crack that can heal itself after an impact, like a wound on the body. The concept of self-healing described is not science fiction created by the crazy imagination of researchers. Recent studies show otherwise. The French company CATALYSE has developed a process of self-healing through the integration of microparticles containing an active liquid ingredient that is released during a crack in the material. The liquid monomer fills the crack, polymerizes and prevents further spread. The innovation of CATALYSE was to imagine a self-repairing formula, which polymerizes when exposed to the outside of the self-contained environment. This includes light (UV or visible rays), oxygen or humidity. The corresponding monomers to be encapsulated are respectively an acrylate (for example TMPTA), an epoxy (mixed with an adapted photoinitiator), linseed oil or diisocyanate (for example an isocyanine trimer or hexamethylene diisocyanate). The encapsulations of these four compounds were studied in parallel and the results are explained in chapters 2, 3 and 4 of this document. The TMPTA and linseed oil are both encapsulated by the sol-gel process, the epoxy and isocyanate, by interfacial polycondensation. The results vary from one monomer to another but the overall results are conclusive. They show that it is possible to obtain a high percentage of the active ingredient and that the particles stay stable over time. Following the bursting of such capsules, the monomer polymerizes and ensures the self-healing process
Thomas, Julie Ann. "Microencapsulation Using Inorganic Wall Materials." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503752.
Full textLi, Ming. "Microencapsulation par évaporation de solvant." Nantes, 2009. http://www.theses.fr/2009NANT2020.
Full textLa technique d’encapsulation par évaporation de solvant est largement utilisée dans des applications pharmaceutiques pour la libération contrôlée du principe actif (médicament). La phase organique constituée de solvant, de polymère et de principe actif est dispersée dans une phase aqueuse. Le solvant diffuse dans cette dernière et puis il s'évapore, ce qui conduit à la formation des microsphères solides de polymère contenant du principe actif à l’intérieur. Contrairement à la plupart des études consacrées au choix des polymères et aux tests de libération, notre étude s’est intéressée aux aspects d'ingénierie afin d’optimiser la durée du procédé et d’analyser l'influence des conditions opératoires sur les propriétés des microsphères. L'évaporation du solvant a été étudiée pour de différentes conditions (température, pression, quantités des matériaux). La durée de procédé a été réduite à 1/3 en appliquant une faible pression (60% de la pression atmosphérique). Les propriétés des microsphères obtenues (taille, surface et structure interne) ont été examinées. L’analyse de la structure interne des microsphères par la nouvelle technique de tomographie à rayons X a montré la taille des pores et de l'emplacement des pores. L’étude a été effectuée ensuite à l’échelle microscopique sur la solidification d’une goutte de la phase dispersée. Le transfert de masse du solvant a été étudié avec l'interféromètre, permettant de mesurer la variation de concentration du solvant et l’épaisseur de la couche limite diffusive. Notre travail a permis de combler les lacunes dans la connaissance de ce procédé et il propose des pistes de développement du procédé
Ugazio, Stéphane. "Microencapsulation d'enzymes dans les sphérulites." Bordeaux 1, 1999. http://www.theses.fr/1999BOR10574.
Full textMahmood, Arshad. "Microencapsulation strategies for islet transplantation." Thesis, Aston University, 1994. http://publications.aston.ac.uk/12597/.
Full textMitchell, Karen Claire. "Microencapsulation for next generation lubricants." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8758/.
Full textMitchell, Claire Elizabeth Teall. "Microencapsulation and organocatalysis in organic synthesis." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613750.
Full textAbderrahmen, Robin. "Conception d'étiquettes autoadhésives par microencapsulation d'adhésif." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI051/document.
Full textThe main objective of this investigation is to prepare innovative silicone liner-free labels. It can be achieved by the adhesive ‘self protection', thanks to its incorporation into microcapsules. This allows the preparation of ‘dry labels' gluing under the application of a pressure, which induces the rupture of the microcapsules, thus releasing the core material, a pressure sensitive adhesive. The first step was to analyse 3 water-based PSA in view of their encapsulation. Then, the most suitable adhesive was microencapsulated by coacervation (using biopolymer as shell) and by in situ polymerisation. Two other encapsulation processes (spray-cooling and spray-drying), were also carried out at the LAGEP and were compared with the 2 former processes. Coating colour formulations were prepared with spray-cooling microcapsules (the most adhesive ones). Coating trials were carried out with a Meyer rod, and by screen printing. Compatibility between microcapsules and the label making process, using a flexographic printing press, was determined. Finally, the mains characteristics of the prepared innovative products (adhesion, application pressure) were compared to industrial self-adhesive homologues, and found that they could be suitable for the preparation of silicon liner-free envelops and stamps
Mhlana, Kanyisile. "Microencapsulation of anti-tuberculosis drugs using sporopollenin." Thesis, Nelson Mandela University, 2017. http://hdl.handle.net/10948/13912.
Full textBooks on the topic "Microencapsulation"
Opara, Emmanuel C., ed. Cell Microencapsulation. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6364-5.
Full textDiMari, S., W. Funke, M. A. Haralson, D. Hunkeler, B. Joos-Müller, A. Matsumoto, O. Okay, et al., eds. Microencapsulation Microgels Iniferters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69682-2.
Full textS, DiMari, ed. Microencapsulation, microgels, iniferters. Berlin: Springer, 1998.
Find full text1938-, Whateley Tony L., ed. Microencapsulation of drugs. Chur, Switzerland: Harwood Academic Publishers, 1992.
Find full textChang, T. M. S., ed. Microencapsulation and Artificial Cells. Totowa, NJ: Humana Press, 1985. http://dx.doi.org/10.1007/978-1-4612-5182-8.
Full textLuis, Pedraz José, and Orive Gorka, eds. Therapeutic applications of cell microencapsulation. New York: Springer Science+Business Media, 2009.
Find full textKwak, Hae-Soo, ed. Nano- and Microencapsulation for Foods. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118292327.
Full textPedraz, José Luis, and Gorka Orive, eds. Therapeutic Applications of Cell Microencapsulation. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5786-3.
Full textMahmood, Arshad. Microencapsulation strategies for islet transplantation. Birmingham: Aston University. Department of Pharmaceutical Sciences, 1994.
Find full text1947-, Benita Simon, ed. Microencapsulation: Methods and industrial applications. 2nd ed. New York: Taylor & Francis, 2006.
Find full textBook chapters on the topic "Microencapsulation"
Gooch, Jan W. "Microencapsulation." In Encyclopedic Dictionary of Polymers, 461–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7476.
Full textHangay, George, Susan V. Gruner, F. W. Howard, John L. Capinera, Eugene J. Gerberg, Susan E. Halbert, John B. Heppner, et al. "Microencapsulation." In Encyclopedia of Entomology, 2379. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_4598.
Full textRoques-Carmes, Claude, and Christine Millot. "Microencapsulation." In Nanomaterials and Surface Engineering, 89–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118618523.ch4.
Full textMishra, Munmaya, and Biao Duan. "Microencapsulation." In The Essential Handbook of Polymer Terms and Attributes, 106–8. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-106.
Full textLim, Grace J., Shirin Zare, Mark Van Dyke, and Anthony Atala. "Cell Microencapsulation." In Advances in Experimental Medicine and Biology, 126–36. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5786-3_11.
Full textAugustin, Mary Ann, and Luz Sanguansri. "Microencapsulation Technologies." In Engineering Foods for Bioactives Stability and Delivery, 119–42. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6595-3_4.
Full textde Vos, Paul. "Historical Perspectives and Current Challenges in Cell Microencapsulation." In Cell Microencapsulation, 3–21. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_1.
Full textMcQuilling, John Patrick, and Emmanuel C. Opara. "Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems." In Cell Microencapsulation, 135–41. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_10.
Full textParedes-Juarez, Genaro A., Brad P. Barnett, and Jeff W. M. Bulte. "Noninvasive Tracking of Alginate-Microencapsulated Cells." In Cell Microencapsulation, 143–55. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_11.
Full textMcQuilling, John Patrick, Sivanandane Sittadjody, Rajesh Pareta, Samuel Pendergraft, Clancy J. Clark, Alan C. Farney, and Emmanuel C. Opara. "Retrieval of Microencapsulated Islet Grafts for Post-transplant Evaluation." In Cell Microencapsulation, 157–71. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_12.
Full textConference papers on the topic "Microencapsulation"
Geranpour, Mansoureh, Zahra Emam-Djomeh, and Gholamhassan Asadi. "Microencapsulation of pumpkin seed oil by spray dryer under various process conditions and determination of the optimal point by RSM." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7332.
Full textSubramanian, Pravin K., and Abdelfattah Zebib. "Marangoni Instabilities in Microencapsulation." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASME, 2003. http://dx.doi.org/10.1115/imece2003-41377.
Full textSubramanian, Pravin K., Abdelfattah Zebib, and Barry McQuillan. "Axisymmetric Solutocapillary Convection in Microencapsulation." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60817.
Full textLopez Hernandez, Arianne. "Influence of Surfactants on Microencapsulation." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.254.
Full textXiaoxiao Zhang, Aaron T. Ohta, and David Garmire. "Rapid monodisperse microencapsulation of single cells." In 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5627084.
Full textNurhayati, Retno Wahyu, Wildan Mubarok, Rafianto Dwi Cahyo, and Kamila Alawiyah. "Oil immersion technique for cellular microencapsulation." In THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5139325.
Full textLopez, Arianne, Maria Cano, Manuel José Lis, and Hendrick Lezeck. "Microencapsulation of Essential oils with biopolymers." In 15th Mediterranean Congress of Chemical Engineering (MeCCE-15). Grupo Pacífico, 2022. http://dx.doi.org/10.48158/mecce-15.t1-p-09.
Full textSedky, S., H. Tawfik, A. Abdel Aziz, S. ElSaegh, A. B. Graham, J. Provine, and R. T. Howe. "Low thermal-budget silicon sealed-cavity microencapsulation process." In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734415.
Full textJaved, Fatima, and Maxim A. Mironov. "Microencapsulation of vitamin D by using natural polymers." In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134370.
Full textSHAO, Wenyao, Mengwen YAN, Quanling XIE, and Xueshan PAN. "Microencapsulation of DHA Algal Oil by Spray Drying." In International Conference on Biological Engineering and Pharmacy 2016 (BEP 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/bep-16.2017.17.
Full textReports on the topic "Microencapsulation"
Baldeschwieler, John D. Development of Microencapsulation Techniques. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada185019.
Full textHaslbeck, Elizabeth G. Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada603499.
Full textMILIAN, L. W., P. R. LAGERAAEN, J. W. ADAMS, and P. D. KALB. TREATABILITY STUDY FOR POLYETHYLENE MICROENCAPSULATION OF COMMERCIALLY GENERATED DSSI ASH MIXED WASTE. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/767118.
Full textMILIAN, L. W., P. R. LAGERAAEN, J. W. ADAMS, and P. D. KALB. TREATABILITY STUDY FOR POLYETHYLENE MICROENCAPSULATION OF COMMERCIALLY GENERATED DSSI ASH MIXED WASTE. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/767175.
Full textLAGERAAEN, P. R., P. D. KALB, L. W. MILIAN, and J. W. ADAMS. DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/761002.
Full textEnstrom, K. G., E. Lee, and C. Ye. Requirements Document for the Design and Implementation of a Personalized Medicine Machine (PMM) Based on Microencapsulation. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557040.
Full textWorley, C. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique. Office of Scientific and Technical Information (OSTI), May 1986. http://dx.doi.org/10.2172/5630415.
Full text