To see the other types of publications on this topic, follow the link: Microdystrophin.

Journal articles on the topic 'Microdystrophin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Microdystrophin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cernisova, Viktorija, Ngoc Lu-Nguyen, Jessica Trundle, Shan Herath, Alberto Malerba, and Linda Popplewell. "Microdystrophin Gene Addition Significantly Improves Muscle Functionality and Diaphragm Muscle Histopathology in a Fibrotic Mouse Model of Duchenne Muscular Dystrophy." International Journal of Molecular Sciences 24, no. 9 (May 3, 2023): 8174. http://dx.doi.org/10.3390/ijms24098174.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disease affecting 1:5000 newborn males. No cure is currently available, but gene addition therapy, based on the adeno-associated viral (AAV) vector-mediated delivery of microdystrophin transgenes, is currently being tested in clinical trials. The muscles of DMD boys present significant fibrotic and adipogenic tissue deposition at the time the treatment starts. The presence of fibrosis not only worsens the disease pathology, but also diminishes the efficacy of gene therapy treatments. To gain an understanding of the efficacy of AAV-based microdystrophin gene addition in a relevant, fibrotic animal model of DMD, we conducted a systemic study in juvenile D2.mdx mice using the single intravenous administration of an AAV8 system expressing a sequence-optimized murine microdystrophin, named MD1 (AAV8-MD1). We mainly focused our study on the diaphragm, a respiratory muscle that is crucial for DMD pathology and that has never been analyzed after treatment with AAV-microdystrophin in this mouse model. We provide strong evidence here that the delivery of AAV8-MD1 provides significant improvement in body-wide muscle function. This is associated with the protection of the hindlimb muscle from contraction-induced damage and the prevention of fibrosis deposition in the diaphragm muscle. Our work corroborates the observation that the administration of gene therapy in DMD is beneficial in preventing muscle fibrosis.
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, K., M. Lawlor, D. Golebiowski, P. Gonzalez, V. Ricotti, J. Schneider, and C. Morris. "Quantification of microdystrophin and correlation to circulating biomarkers." Neuromuscular Disorders 27 (October 2017): S214. http://dx.doi.org/10.1016/j.nmd.2017.06.431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hersh, Jessica, José Manuel Condor Capcha, Camila Iansen Irion, Guerline Lambert, Mauricio Noguera, Mohit Singh, Avinash Kaur, et al. "Peptide-Functionalized Dendrimer Nanocarriers for Targeted Microdystrophin Gene Delivery." Pharmaceutics 13, no. 12 (December 15, 2021): 2159. http://dx.doi.org/10.3390/pharmaceutics13122159.

Full text
Abstract:
Gene therapy is a good alternative for determined congenital disorders; however, there are numerous limitations for gene delivery in vivo including targeted cellular uptake, intracellular trafficking, and transport through the nuclear membrane. Here, a modified G5 polyamidoamine (G5 PAMAM) dendrimer–DNA complex was developed, which will allow cell-specific targeting to skeletal muscle cells and transport the DNA through the intracellular machinery and the nuclear membrane. The G5 PAMAM nanocarrier was modified with a skeletal muscle-targeting peptide (SMTP), a DLC8-binding peptide (DBP) for intracellular transport, and a nuclear localization signaling peptide (NLS) for nuclear uptake, and polyplexed with plasmid DNA containing the GFP-tagged microdystrophin (µDys) gene. The delivery of µDys has been considered as a therapeutic modality for patients suffering from a debilitating Duchenne muscular dystrophy (DMD) disorder. The nanocarrier–peptide–DNA polyplexes were prepared with different charge ratios and characterized for stability, size, surface charge, and cytotoxicity. Using the optimized nanocarrier polyplexes, the transfection efficiency in vitro was determined by demonstrating the expression of the GFP and the µDys protein using fluorescence and Western blotting studies, respectively. Protein expression in vivo was determined by injecting an optimal nanocarrier polyplex formulation to Duchenne model mice, mdx4Cv. Ultimately, these nanocarrier polyplexes will allow targeted delivery of the microdystrophin gene to skeletal muscle cells and result in improved muscle function in Duchenne muscular dystrophy patients.
APA, Harvard, Vancouver, ISO, and other styles
4

Ho, Peggy P., Lauren J. Lahey, Foteini Mourkioti, Peggy E. Kraft, Antonio Filareto, Moritz Brandt, Klas E. G. Magnusson, et al. "Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy." Proceedings of the National Academy of Sciences 115, no. 39 (September 4, 2018): E9182—E9191. http://dx.doi.org/10.1073/pnas.1808648115.

Full text
Abstract:
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is “foreign,” and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Paul T., Rui Xu, Louise R. Rodino-Klapac, Elaine Oglesbay, Marybeth Camboni, Chrystal L. Montgomery, Kim Shontz, et al. "Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice." American Journal of Physiology-Cell Physiology 296, no. 3 (March 2009): C476—C488. http://dx.doi.org/10.1152/ajpcell.00456.2008.

Full text
Abstract:
The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:β1,4- N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcβ1,4[NeuAc(orGc)α2, 3]Galβ1,4GlcNAcβ-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Bostick, Brian, Jin-Hong Shin, Yongping Yue, and Dongsheng Duan. "AAV-microdystrophin Therapy Improves Cardiac Performance in Aged Female mdx Mice." Molecular Therapy 19, no. 10 (October 2011): 1826–32. http://dx.doi.org/10.1038/mt.2011.154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Percival, Justin M., Paul Gregorevic, Guy L. Odom, Glen B. Banks, Jeffrey S. Chamberlain, and Stanley C. Froehner. "rAAV6-Microdystrophin Rescues Aberrant Golgi Complex Organization in mdx Skeletal Muscles." Traffic 8, no. 10 (July 12, 2007): 1424–39. http://dx.doi.org/10.1111/j.1600-0854.2007.00622.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boehler, Jessica F., Valeria Ricotti, J. Patrick Gonzalez, Meghan Soustek-Kramer, Lauren Such, Kristy J. Brown, Joel S. Schneider, and Carl A. Morris. "Membrane recruitment of nNOSµ in microdystrophin gene transfer to enhance durability." Neuromuscular Disorders 29, no. 10 (October 2019): 735–41. http://dx.doi.org/10.1016/j.nmd.2019.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shin, Jin-Hong, Xiufang Pan, Chady H. Hakim, Hsiao T. Yang, Yongping Yue, Keqing Zhang, Ronald L. Terjung, and Dongsheng Duan. "Microdystrophin Ameliorates Muscular Dystrophy in the Canine Model of Duchenne Muscular Dystrophy." Molecular Therapy 21, no. 4 (April 2013): 750–57. http://dx.doi.org/10.1038/mt.2012.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pichavant, Christophe, Pierre Chapdelaine, Daniel G. Cerri, Jean-Christophe Dominique, Simon P. Quenneville, Daniel Skuk, Joe N. Kornegay, João CS Bizario, Xiao Xiao, and Jacques P. Tremblay. "Expression of Dog Microdystrophin in Mouse and Dog Muscles by Gene Therapy." Molecular Therapy 18, no. 5 (May 2010): 1002–9. http://dx.doi.org/10.1038/mt.2010.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gregorevic, Paul, James M. Allen, Elina Minami, Michael J. Blankinship, Miki Haraguchi, Leonard Meuse, Eric Finn, et al. "rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice." Nature Medicine 12, no. 7 (July 2006): 787–89. http://dx.doi.org/10.1038/nm1439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Danilov, Kirill A., Svetlana G. Vassilieva, Anna V. Polikarpova, Anna V. Starikova, Anna A. Shmidt, Ivan I. Galkin, Alexandra A. Tsitrina, Tatiana V. Egorova, Sergei N. Orlov, and Yuri V. Kotelevtsev. "In vitro assay for the efficacy assessment of AAV vectors expressing microdystrophin." Experimental Cell Research 392, no. 2 (July 2020): 112033. http://dx.doi.org/10.1016/j.yexcr.2020.112033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shin, J.-H., Y. Nitahara-Kasahara, H. Hayashita-Kinoh, S. Ohshima-Hosoyama, K. Kinoshita, T. Chiyo, H. Okada, T. Okada, and S. Takeda. "Improvement of cardiac fibrosis in dystrophic mice by rAAV9-mediated microdystrophin transduction." Gene Therapy 18, no. 9 (March 31, 2011): 910–19. http://dx.doi.org/10.1038/gt.2011.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Benabdallah, Basma F., Arnaud Duval, Joel Rousseau, Pierre Chapdelaine, Michael C. Holmes, Eli Haddad, Jacques P. Tremblay, and Christian M. Beauséjour. "Targeted Gene Addition of Microdystrophin in Mice Skeletal Muscle via Human Myoblast Transplantation." Molecular Therapy - Nucleic Acids 2 (2013): e68. http://dx.doi.org/10.1038/mtna.2012.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xiong, Fu, Shaobo Xiao, Meijuan Yu, Wanyi Li, Hui Zheng, Yanchang Shang, Funing Peng, et al. "Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport." BMC Neuroscience 8, no. 1 (2007): 50. http://dx.doi.org/10.1186/1471-2202-8-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xiong, F., Y. Xu, H. Zheng, X. Lu, S. Feng, Y. Shang, Y. Li, Y. Zhang, S. Jin, and C. Zhang. "Microdystrophin Delivery in Dystrophin-Deficient (mdx) Mice by Genetically-Corrected Syngeneic MSCs Transplantation." Transplantation Proceedings 42, no. 7 (September 2010): 2731–39. http://dx.doi.org/10.1016/j.transproceed.2010.04.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Murray, Jason, Guy Odom, Sigurast Olafsson, Stephen Hauschka, Jeffrey Chamberlain, Farid Moussavi-Harami, and Michael Regnier. "AAV-Mediated Delivery of Ribonucleotide Reductase and Microdystrophin Rescues Function in Dystrophic Mice." Biophysical Journal 114, no. 3 (February 2018): 541a. http://dx.doi.org/10.1016/j.bpj.2017.11.2956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Koo, Taeyoung, Takashi Okada, Takis Athanasopoulos, Helen Foster, Shin'ichi Takeda, and George Dickson. "Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog." Journal of Gene Medicine 13, no. 9 (September 2011): 497–506. http://dx.doi.org/10.1002/jgm.1602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wilton-Clark, Harry, and Toshifumi Yokota. "Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot." Genes 13, no. 2 (January 28, 2022): 257. http://dx.doi.org/10.3390/genes13020257.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) is a fatal genetic disease affecting children that is caused by a mutation in the gene encoding for dystrophin. In the absence of functional dystrophin, patients experience progressive muscle deterioration, leaving them wheelchair-bound by age 12 and with few patients surviving beyond their third decade of life as the disease advances and causes cardiac and respiratory difficulties. In recent years, an increasing number of antisense and gene therapies have been studied for the treatment of muscular dystrophy; however, few of these therapies focus on treating mutations arising in the N-terminal encoding region of the dystrophin gene. This review summarizes the current state of development of N-terminal antisense and gene therapies for DMD, mainly focusing on exon-skipping therapy for duplications and deletions, as well as microdystrophin therapy.
APA, Harvard, Vancouver, ISO, and other styles
20

Hamm, Shelby E., Daniel D. Fathalikhani, Katherine E. Bukovec, Adele K. Addington, Haiyan Zhang, Justin B. Perry, Ryan P. McMillan, et al. "Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice." Molecular Therapy - Methods & Clinical Development 23 (December 2021): 460. http://dx.doi.org/10.1016/j.omtm.2021.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hamm, Shelby E., Daniel D. Fathalikhani, Katherine E. Bukovec, Adele K. Addington, Haiyan Zhang, Justin B. Perry, Ryan P. McMillan, et al. "Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice." Molecular Therapy - Methods & Clinical Development 21 (June 2021): 144–60. http://dx.doi.org/10.1016/j.omtm.2021.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bostick, Brian, Yongping Yue, Yi Lai, Chun Long, Dejia Li, and Dongsheng Duan. "Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice." Human Gene Therapy 19, no. 8 (August 2008): 851–56. http://dx.doi.org/10.1089/hum.2008.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Mingju, Yongping Yue, Scott Q. Harper, Robert W. Grange, Jeffrey S. Chamberlain, and Dongsheng Duan. "Adeno-Associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury." Molecular Therapy 11, no. 2 (February 2005): 245–56. http://dx.doi.org/10.1016/j.ymthe.2004.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Abmayr, Simone, Paul Gregorevic, James M. Allen, and Jeffrey S. Chamberlain. "Phenotypic Improvement of Dystrophic Muscles by rAAV/Microdystrophin Vectors Is Augmented by Igf1 Codelivery." Molecular Therapy 12, no. 3 (September 2005): 441–50. http://dx.doi.org/10.1016/j.ymthe.2005.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bachrach, E., S. Li, A. L. Perez, J. Schienda, K. Liadaki, J. Volinski, A. Flint, J. Chamberlain, and L. M. Kunkel. "Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells." Proceedings of the National Academy of Sciences 101, no. 10 (March 1, 2004): 3581–86. http://dx.doi.org/10.1073/pnas.0400373101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Willcocks, R., D. Lott, S. Forbes, K. Vandenborne, and G. Walter. "399P MRI assessment of microdystrophin gene therapy in DMD: a five year longitudinal study." Neuromuscular Disorders 43 (October 2024): 104441.127. http://dx.doi.org/10.1016/j.nmd.2024.07.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chicoine, LG, CL Montgomery, WG Bremer, KM Shontz, DA Griffin, KN Heller, S. Lewis, et al. "Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery." Molecular Therapy 22, no. 2 (February 2014): 338–47. http://dx.doi.org/10.1038/mt.2013.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gregorevic, Paul, Michael J. Blankinship, James M. Allen, and Jeffrey S. Chamberlain. "Systemic Microdystrophin Gene Delivery Improves Skeletal Muscle Structure and Function in Old Dystrophic mdx Mice." Molecular Therapy 16, no. 4 (April 2008): 657–64. http://dx.doi.org/10.1038/mt.2008.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jørgensen, Louise H., Nancy Larochelle, Kristian Orlopp, Patrick Dunant, Roy W. R. Dudley, Rolf Stucka, Christian Thirion, Maggie C. Walter, Steven H. Laval, and Hanns Lochmüller. "Efficient and Fast Functional Screening of Microdystrophin ConstructsIn VivoandIn Vitrofor Therapy of Duchenne Muscular Dystrophy." Human Gene Therapy 20, no. 6 (June 2009): 641–50. http://dx.doi.org/10.1089/hum.2008.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

XIONG, F., C. ZHANG, S. XIAO, M. LI, S. WANG, M. YU, and Y. SHANG. "Construction of Recombinant Adenovirus Including Microdystrophin and Expression in the Mesenchymal Cells of mdx Mice." Chinese Journal of Biotechnology 23, no. 1 (January 2007): 27–32. http://dx.doi.org/10.1016/s1872-2075(07)60003-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hayashita-Kinoh, Hiromi, Posadas-Herrera Guillermo, Yuko Nitahara-Kasahara, Mutsuki Kuraoka, Hironori Okada, Tomoko Chiyo, Shin’ichi Takeda, and Takashi Okada. "Improved transduction of canine X-linked muscular dystrophy with rAAV9-microdystrophin via multipotent MSC pretreatment." Molecular Therapy - Methods & Clinical Development 20 (March 2021): 133–41. http://dx.doi.org/10.1016/j.omtm.2020.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Feng, Shan-wei, Fei Chen, Jiqing Cao, Mei-juan Yu, Ying-yin Liang, Xin-ming Song, and Cheng Zhang. "Restoration of muscle fibers and satellite cells after isogenic MSC transplantation with microdystrophin gene delivery." Biochemical and Biophysical Research Communications 419, no. 1 (March 2012): 1–6. http://dx.doi.org/10.1016/j.bbrc.2012.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hayashita-Kinoh, Hiromi, Hironori Okada, Yuko N. Kasahara, Tomoko Chiyo, Kiwamu Imagawa, Katsuhiko Tachibana, Shin'ichi Takeda, and Takashi Okada. "378. Improved Transduction of Canine X-Linked Muscular Dystrophy with rAAV9-Microdystrophin by Introducing Immune Tolerance." Molecular Therapy 24 (May 2016): S150—S151. http://dx.doi.org/10.1016/s1525-0016(16)33187-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hayashita-Kinoh, Hiromi, Hironori Okada, Yuko Nitahara-Kasahara, Tomoko Chiyo, Kiwamu Imagawa, Katsuhiko Tachibana, Shin'ichi Takeda, and Takashi Okada. "400. Improved Transduction of Canine X-Linked Muscular Dystrophy With rAAV9-Microdystrophin By Using MSCs Pretreatment." Molecular Therapy 23 (May 2015): S158—S159. http://dx.doi.org/10.1016/s1525-0016(16)34009-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yoshimura, Madoka, Miki Sakamoto, Madoka Ikemoto, Yasushi Mochizuki, Katsutoshi Yuasa, Yuko Miyagoe-Suzuki, and Shin'ichi Takeda. "AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype." Molecular Therapy 10, no. 5 (November 2004): 821–28. http://dx.doi.org/10.1016/j.ymthe.2004.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yue, Yongping, Zhenbo Li, Scott Q. Harper, Robin L. Davisson, Jeffrey S. Chamberlain, and Dongsheng Duan. "Microdystrophin Gene Therapy of Cardiomyopathy Restores Dystrophin-Glycoprotein Complex and Improves Sarcolemma Integrity in the Mdx Mouse Heart." Circulation 108, no. 13 (September 30, 2003): 1626–32. http://dx.doi.org/10.1161/01.cir.0000089371.11664.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xiong, Fu, Shaobo Xiao, Funing Peng, Hui Zheng, Meijuan Yu, Yechun Ruan, Wanyi Li, et al. "Herpes Simplex Virus VP22 Enhances Adenovirus-Mediated Microdystrophin Gene Transfer to Skeletal Muscles in Dystrophin-Deficient (mdx) Mice." Human Gene Therapy 18, no. 6 (June 2007): 490–501. http://dx.doi.org/10.1089/hum.2006.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hayashita-Kinoh, Hiromi, Naoko Yugeta, Hironori Okada, Yuko Nitahara-Kasahara, Tomoko Chiyo, Takashi Okada, and Shin'ichi Takeda. "Intra-Amniotic rAAV-Mediated Microdystrophin Gene Transfer Improves Canine X-Linked Muscular Dystrophy and May Induce Immune Tolerance." Molecular Therapy 23, no. 4 (April 2015): 627–37. http://dx.doi.org/10.1038/mt.2015.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dastgir, J., S. Rastogi, D. Philips, C. Wilson, N. Boulos, J. Hall, V. Jimenez, et al. "P16 An investigational AAV8 gene therapy coding for a novel microdystrophin as a treatment for Duchenne muscular dystrophy." Neuromuscular Disorders 33 (October 2023): S101. http://dx.doi.org/10.1016/j.nmd.2023.07.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Filareto, Antonio, Katie Maguire-Nguyen, Qiang Gan, Garazi Aldanondo, Léo Machado, Jeffrey S. Chamberlain, and Thomas A. Rando. "Monitoring disease activity noninvasively in the mdx model of Duchenne muscular dystrophy." Proceedings of the National Academy of Sciences 115, no. 30 (July 9, 2018): 7741–46. http://dx.doi.org/10.1073/pnas.1802425115.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.
APA, Harvard, Vancouver, ISO, and other styles
41

Schinkel, Stefanie, Ralf Bauer, Raffi Bekeredjian, Rolf Stucka, Désirée Rutschow, Hanns Lochmüller, Jürgen A. Kleinschmidt, Hugo A. Katus, and Oliver J. Müller. "Long-Term Preservation of Cardiac Structure and Function After Adeno-Associated Virus Serotype 9-Mediated Microdystrophin Gene Transfer inmdxMice." Human Gene Therapy 23, no. 6 (June 2012): 566–75. http://dx.doi.org/10.1089/hum.2011.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Athanasopoulos, Takis, Ian Graham, Capucine Trollet, Helen Foster, Norma Perez, Vanessa Hill, Phillippe Moullier, and George Dickson. "907. Development of Recombinant Novel Adeno-Associated Viral (rAAV) Vectors Encoding Optimised Microdystrophin cDNAs for Duchenne Muscular Dystrophy (DMD)." Molecular Therapy 13 (2006): S349—S350. http://dx.doi.org/10.1016/j.ymthe.2006.08.997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Le Guiner, C., M. Montus, L. Servais, Y. Cherel, J. Y. Hogrel, P. Carlier, C. Masurier, et al. "P.20.13 Gene therapy of Duchenne Muscular Dystrophy using rAAV vectors: Exon skipping and microdystrophin approaches in GRMD dogs." Neuromuscular Disorders 23, no. 9-10 (October 2013): 842–43. http://dx.doi.org/10.1016/j.nmd.2013.06.703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bourg, Nathalie, Ai Vu Hong, William Lostal, Abbass Jaber, Nicolas Guerchet, Guillaume Tanniou, Fanny Bordier, et al. "Co-Administration of Simvastatin Does Not Potentiate the Benefit of Gene Therapy in the mdx Mouse Model for Duchenne Muscular Dystrophy." International Journal of Molecular Sciences 23, no. 4 (February 11, 2022): 2016. http://dx.doi.org/10.3390/ijms23042016.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) is the most common and cureless muscle pediatric genetic disease, which is caused by the lack or the drastically reduced expression of dystrophin. Experimental therapeutic approaches for DMD have been mainly focused in recent years on attempts to restore the expression of dystrophin. While significant progress was achieved, the therapeutic benefit of treated patients is still unsatisfactory. Efficiency in gene therapy for DMD is hampered not only by incompletely resolved technical issues, but likely also due to the progressive nature of DMD. It is indeed suspected that some of the secondary pathologies, which are evolving over time in DMD patients, are not fully corrected by the restoration of dystrophin expression. We recently identified perturbations of the mevalonate pathway and of cholesterol metabolism in DMD patients. Taking advantage of the mdx model for DMD, we then demonstrated that some of these perturbations are improved by treatment with the cholesterol-lowering drug, simvastatin. In the present investigation, we tested whether the combination of the restoration of dystrophin expression with simvastatin treatment could have an additive beneficial effect in the mdx model. We confirmed the positive effects of microdystrophin, and of simvastatin, when administrated separately, but detected no additive effect by their combination. Thus, the present study does not support an additive beneficial effect by combining dystrophin restoration with a metabolic normalization by simvastatin.
APA, Harvard, Vancouver, ISO, and other styles
45

Dastgir, J., P. Falabella, C. Qiao, S. Kim, N. Buss, M. Fiscella, S. Pakola, and O. Danos. "P.130 RGX-202: An investigational AAV8 gene therapy coding for a novel microdystrophin as a treatment for Duchenne muscular dystrophy." Neuromuscular Disorders 32 (October 2022): S101. http://dx.doi.org/10.1016/j.nmd.2022.07.246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dreghici, R. Donisa, S. Redican, J. Lawrence, K. Brown, F. Wang, J. Gonzalez, J. Schneider, C. Morris, P. Shieh, and B. Byrne. "FP.28 IGNITE DMD phase I/II study of SGT-001 microdystrophin gene therapy for DMD: Long-term outcomes and expression update." Neuromuscular Disorders 32 (October 2022): S98. http://dx.doi.org/10.1016/j.nmd.2022.07.234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Foster, Helen, Paul S. Sharp, Takis Athanasopoulos, Capucine Trollet, Ian R. Graham, Keith Foster, Dominic J. Wells, and George Dickson. "Codon and mRNA Sequence Optimization of Microdystrophin Transgenes Improves Expression and Physiological Outcome in Dystrophic mdx Mice Following AAV2/8 Gene Transfer." Molecular Therapy 16, no. 11 (November 2008): 1825–32. http://dx.doi.org/10.1038/mt.2008.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gregorevic, Paul, Michael J. Blankinship, Elina Minami, James M. Allen, Charles E. Murry, and Jeffrey S. Chamberlain. "35. Systemic Administration of rAAV6-Microdystrophin Preserves Muscle Function and Extends Lifespan in the Dystrophin-/Utrophin- Mouse Model of Severe Muscular Dystrophy." Molecular Therapy 13 (2006): S15. http://dx.doi.org/10.1016/j.ymthe.2006.08.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Foster, H., D. J. Wells, C. Trollet, T. Athanasopoulos, I. Graham, K. Foster, and J. G. Dickson. "G.P.8.08 Codon optimisation of microdystrophin results in improvements in expression and physiological outcome in the mdx mouse following AAV8 gene transfer." Neuromuscular Disorders 18, no. 9-10 (October 2008): 784. http://dx.doi.org/10.1016/j.nmd.2008.06.207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Le Guiner, C., L. Servais, M. Montus, F. Bodvael, B. Gjata, J. Y. Hogrel, P. Carlier, et al. "Adeno-associated virus vector (AAV) microdystrophin gene therapy prolongs survival and restores muscle function in the canine model of Duchenne muscular dystrophy (DMD)." Neuromuscular Disorders 25 (October 2015): S315. http://dx.doi.org/10.1016/j.nmd.2015.06.458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography