To see the other types of publications on this topic, follow the link: Microdisk.

Journal articles on the topic 'Microdisk'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Microdisk.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guo, Zhihe, Haotian Wang, Chenming Zhao, Lin Chen, Sheng Liu, Jinliang Hu, Yi Zhou, and Xiang Wu. "Spectral Modulation of Optofluidic Coupled-Microdisk Lasers in Aqueous Media." Nanomaterials 9, no. 10 (October 11, 2019): 1439. http://dx.doi.org/10.3390/nano9101439.

Full text
Abstract:
We present the spectral modulation of an optofluidic microdisk device and investigate the mechanism and characteristics of the microdisk laser in aqueous media. The optofluidic microdisk device combines a solid-state dye-doped polymer microdisk with a microfluidic channel device, whose optical field can interact with the aqueous media. Interesting phenomena, such as mode splitting and single-mode lasing in the laser spectrum, can be observed in two coupled microdisks under the pump laser. We modulated the spectra by changing the gap of the two coupled microdisks, the refractive indices of the aqueous media, and the position of a pump light, namely, selective pumping schemes. This optofluidic microlaser provides a method to modulate the laser spectra precisely and flexibly, which will help to further understand spectral properties of coupled microcavity laser systems and develop potential applications in photobiology and photomedicine.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhukov, Alexey E., Natalia V. Kryzhanovskaya, Eduard I. Moiseev, Anna S. Dragunova, Mingchu Tang, Siming Chen, Huiyun Liu, et al. "InAs/GaAs Quantum Dot Microlasers Formed on Silicon Using Monolithic and Hybrid Integration Methods." Materials 13, no. 10 (May 18, 2020): 2315. http://dx.doi.org/10.3390/ma13102315.

Full text
Abstract:
An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15–31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Yumin, Zhen Liu, Xiaohui Qiu, and Xinfeng Liu. "Individual concave twin ZnO microdisks with optical resonances." Chemical Communications 58, no. 1 (2022): 116–19. http://dx.doi.org/10.1039/d1cc05332a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Youngmin, Simone Assali, Yongduck Jung, Daniel Burt, Lin Zhang, Hyo-Jun Joo, Sebastian Koelling, et al. "Evolution of Gesn Lasers Towards Photonic Integration into Practical Applications." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1167. http://dx.doi.org/10.1149/ma2022-02321167mtgabs.

Full text
Abstract:
GeSn alloys have emerged as a promising material for group IV light sources because alloying Ge with Sn increases the directness of the bandstructure, thus improving the efficiency of light emission. Despite several years of progress in GeSn lasers, however, the integration of such lasers into practical applications still faces challenges such as high threshold, low operating temperature, and large device footprint. In this report, we address these challenges via each of the studies containing thermal management, defect reduction, and nanowire growth approach. First, we demonstrate improved lasing characteristics including reduced threshold and increased operating temperature in GeSn microdisks directly sitting on Si, which is allowed by the enhanced thermal management over the conventional suspended microdisks. Although there is a concern about poor optical confinement of the sitting approach, we confirm the simultaneous achievement of excellent heat dissipation and superior optical confinement from the microdisk released on Si through experiments and theoretical simulations. We also demonstrate a decreased threshold in microdisk lasers fabricated using a high-quality GeSn-on-insulator (GeSnOI) substrate. Photoluminescence measurements show that the reduction of defects in GeSnOI leads to enhancement of spontaneous emission and reduction of the lasing threshold. Lastly, we present the potential for GeSn nanowire lasers having smaller footprints by observing clear cavity resonances in a single nanowire grown by a bottom-up growth approach. Our demonstrations provide guiding principles to push the performance of GeSn lasers to the limit towards a realization of practical group IV light sources.
APA, Harvard, Vancouver, ISO, and other styles
5

Зубов, Ф. И., М. В. Максимов, Н. В. Крыжановская, Э. И. Моисеев, А. М. Надточий, А. C. Драгунова, С. А. Блохин, et al. "Увеличение оптической мощности микродисковых лазеров InGaAs/GaAs, перенесенных на кремниевую подложку методом термокомпрессии." Письма в журнал технической физики 47, no. 20 (2021): 3. http://dx.doi.org/10.21883/pjtf.2021.20.51604.18911.

Full text
Abstract:
The output power is studied under continuous-wave operation of microdisk lasers with InGaAs/GaAs quantum well-dots hybridly integrated with a silicon substrate with the epitaxial side down using the thermocompression bonding method. Owing a decrease in the thermal resistance and suppression of self-heating, an increase in the values of currents is observed at which the power is saturated and the lasing is quenched, as well as an increase in the peak power. In microdisks with a diameter of 19 µm, the highest output optical power in the continuous wave regime was 9.4 mW.
APA, Harvard, Vancouver, ISO, and other styles
6

Жуков, А. Е., Э. И. Моисеев, А. М. Надточий, Н. В. Крыжановская, М. М. Кулагина, С. А. Минтаиров, Н. А. Калюжный, Ф. И. Зубов, and М. В. Максимов. "Влияние саморазогрева на модуляционные характеристики микродискового лазера." Письма в журнал технической физики 46, no. 11 (2020): 3. http://dx.doi.org/10.21883/pjtf.2020.11.49488.18271.

Full text
Abstract:
The performance of quantum dot microdisk lasers operating at room temperature without thermal stabilization was experimentally investigated, and the highest modulation bandwidth of microdisks of various diameters was calculated. It is shown that taking into account the self-heating effect of the microlaser at high bias currents, which manifests itself in a decrease in the maximum modulation frequency and in an increase in the current at which the maximum speed is reached, allows us to describe the experimental data well. Self-heating effect has the greatest impact on microlasers of small diameter (less than 20 µm).
APA, Harvard, Vancouver, ISO, and other styles
7

Жуков, А. Е., Э. И. Моисеев, А. М. Надточий, А. C. Драгунова, Н. В. Крыжановская, М. М. Кулагина, А. М. Можаров, et al. "Лазерная генерация перенесенных на кремний инжекционных микродисков с квантовыми точками InAs/InGaAs/GaAs." Письма в журнал технической физики 46, no. 16 (2020): 3. http://dx.doi.org/10.21883/pjtf.2020.16.49844.18354.

Full text
Abstract:
AlGaAs/GaAs microdisk lasers with InAs/InGaAs quantum dots region were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact put over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them p-contact down to separate contact pads. No effect of non-native substrate on electrical resistance, threshold current, thermal resistance, and spectral characteristics was revealed. Microdisks lase in continuous-wave mode without external cooling with the threshold current density of 0.7 kA/cm2. Lasing wavelength remains stable (<0.1 nm/mA) against injection current increment.
APA, Harvard, Vancouver, ISO, and other styles
8

Levi, A. F. J. "Microdisk lasers." Solid-State Electronics 37, no. 4-6 (April 1994): 1297–302. http://dx.doi.org/10.1016/0038-1101(94)90412-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wipf, David O., Adrian C. Michael, and R. Mark Wightman. "Microdisk electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 269, no. 1 (September 1989): 15–25. http://dx.doi.org/10.1016/0022-0728(89)80100-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Michael, A. C., R. M. Wightman, and C. A. Amatore. "Microdisk electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 267, no. 1-2 (August 1989): 33–45. http://dx.doi.org/10.1016/0022-0728(89)80235-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chuang, Ricky Wenkuei, Bo-Liang Liu, and Cheng-Liang Huang. "The Spectral Response of the Dual Microdisk Resonator Based on BaTiO3 Resistive Random Access Memory." Micromachines 13, no. 8 (July 26, 2022): 1175. http://dx.doi.org/10.3390/mi13081175.

Full text
Abstract:
With the resistive random access memory (ReRAM) devices based on the Al/BaTiO3 (BTO)/ITO structure fabricated at hand, by cross-analyzing the resistive memory characteristics in terms of various barium titanate (BTO) film thicknesses, it is found that the device with 60 nm thick BTO can be switched more than 425 times, while the corresponding SET/RESET voltage, the on-off ratio, and the retention time are −0.69 V/0.475 V, 102, and more than 104 seconds, respectively. Furthermore, the aforementioned ReRAM with a low switching voltage and low power consumption is further integrated with a waveguide resonator in the form of a dual microdisk aligned in a parallel fashion. As the separation gap between the two microdisks is fixed at 15 μm, the ReRAM-mediated dual disk resonator would render a 180° phase reversal between the spectral outputs of the through-port and drop-port. If the gap is shortened to 10 and 5 μm, the expected phase reversal could also be retrieved due to the selective combinations of different memory states associated with each of the two ReRAM microdisks as witnessed by a series of characterization measurements.
APA, Harvard, Vancouver, ISO, and other styles
12

Жуков, А. Е., Н. В. Крыжановская, Э. И. Моисеев, А. М. Надточий, М. В. Максимов, and А. С. Драгунова. "Учет подложки при расчете электрического сопротивления микродисковых лазеров." Физика и техника полупроводников 55, no. 2 (2021): 195. http://dx.doi.org/10.21883/ftp.2021.02.50508.9530.

Full text
Abstract:
Analytical expressions are presented and used to analyze the components of the electrical resistance of injection microdisk lasers depending on the size of the microdisk resonator, the parameters of the substrate, and the geometry of the contact to it.
APA, Harvard, Vancouver, ISO, and other styles
13

Tsukanov, A. V., and I. Yu Kateev. "Optical measurement of a quantum dot state in a microdisk by a Stark transducer." Laser Physics Letters 19, no. 8 (June 27, 2022): 086201. http://dx.doi.org/10.1088/1612-202x/ac72a6.

Full text
Abstract:
Abstract A spectroscopic method for determining the number of electrons in a quantum dot (QD) located inside a microdisk resonator is proposed. A transducer with the form of a ring structure composed of single-electron QDs is an auxiliary element used to enhance the interaction of laser photons with the QD and with the microdisk. The microdisk parameters are calculated to ensure an efficient energy exchange between the disk modes and the transducer QDs. The influence of the Stark and Förster effects on the measurement accuracy is studied. The optimal measurement regime is shown to be achieved provided that both effects are compensated.
APA, Harvard, Vancouver, ISO, and other styles
14

Tsai, ChengDa, Ikai Lo, YingChieh Wang, ChenChi Yang, HongYi Yang, HueiJyun Shih, HuiChun Huang, Mitch M. C. Chou, Louie Huang, and Binson Tseng. "Indium-Incorporation with InxGa1-xN Layers on GaN-Microdisks by Plasma-Assisted Molecular Beam Epitaxy." Crystals 9, no. 6 (June 14, 2019): 308. http://dx.doi.org/10.3390/cryst9060308.

Full text
Abstract:
Indium-incorporation with InxGa1-xN layers on GaN-microdisks has been systematically studied against growth parameters by plasma-assisted molecular beam epitaxy. The indium content (x) of InxGa1-xN layer increased to 44.2% with an In/(In + Ga) flux ratio of up to 0.6 for a growth temperature of 620 °C, and quickly dropped with a flux ratio of 0.8. At a fixed In/(In + Ga) flux ratio of 0.6, we found that the indium content decreased as the growth temperature increased from 600 °C to 720 °C and dropped to zero at 780 °C. By adjusting the growth parameters, we demonstrated an appropriate InxGa1-xN layer as a buffer to grow high-indium-content InxGa1-xN/GaN microdisk quantum wells for micro-LED applications.
APA, Harvard, Vancouver, ISO, and other styles
15

Zhukov, Alexey E., Eduard I. Moiseev, Alexey M. Nadtochiy, Ivan S. Makhov, Konstantin A. Ivanov, Anna S. Dragunova, Nikita A. Fominykh, et al. "Dynamic characteristics and noise modelling of directly modulated quantum well-dots microdisk lasers on silicon." Laser Physics Letters 19, no. 2 (December 29, 2021): 025801. http://dx.doi.org/10.1088/1612-202x/ac44a3.

Full text
Abstract:
Abstract The small-signal amplitude modulation, threshold, and spectral characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots active region were studied jointly with the spectral and threshold parameters of edge-emitting lasers made from the same epitaxial heterostructure. Using the obtained material parameters, the relative intensity noise of the microdisk lasers was calculated as a function of the bias current and side-mode suppression ratio. It is shown that the integral noise is low enough for error-free optical data transmission with the maximum possible bitrate limited by the microdisk modulation bandwidth, if the bias current is above 1.7× threshold current (for side mode suppression ratio > 20 dB).
APA, Harvard, Vancouver, ISO, and other styles
16

Proscia, Nicholas V., Harishankar Jayakumar, Xiaochen Ge, Gabriel Lopez-Morales, Zav Shotan, Weidong Zhou, Carlos A. Meriles, and Vinod M. Menon. "Microcavity-coupled emitters in hexagonal boron nitride." Nanophotonics 9, no. 9 (May 24, 2020): 2937–44. http://dx.doi.org/10.1515/nanoph-2020-0187.

Full text
Abstract:
AbstractIntegration of quantum emitters in photonic structures is an important step in the broader quest to generate and manipulate on-demand single photons via compact solid-state devices. Unfortunately, implementations relying on material platforms that also serve as the emitter host often suffer from a tradeoff between the desired emitter properties and the photonic system practicality and performance. Here, we demonstrate “pick and place” integration of a Si3N4 microdisk optical resonator with a bright emitter host in the form of ∼20-nm-thick hexagonal boron nitride (hBN). The film folds around the microdisk maximizing contact to ultimately form a hybrid hBN/Si3N4 structure. The local strain that develops in the hBN film at the resonator circumference deterministically activates a low density of defect emitters within the whispering gallery mode volume of the microdisk. These conditions allow us to demonstrate cavity-mediated out-coupling of emission from defect states in hBN through the microdisk cavity modes. Our results pave the route toward the development of chip-scale quantum photonic circuits with independent emitter/resonator optimization for active and passive functionalities.
APA, Harvard, Vancouver, ISO, and other styles
17

Gao, Xiaoping, and Henry S. White. "Rotating Microdisk Voltammetry." Analytical Chemistry 67, no. 22 (November 1995): 4057–64. http://dx.doi.org/10.1021/ac00118a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Min, Byung-Ju, Yeon-Ji Kim, Jae-Hyuck Choi, Min-Woo Kim, Kyong-Tae Park, Dong Jin Jang, Jin Sik Choi, and You-Shin No. "Electrically driven on-chip transferrable micro-LEDs." Applied Physics Letters 121, no. 24 (December 12, 2022): 241107. http://dx.doi.org/10.1063/5.0111362.

Full text
Abstract:
In this study, we report the experimental demonstration of electrically driven on-chip transferrable microdisk light-emitting diodes (LEDs). A vertical p– i– n doped AlGaInP microdisk, including multi-quantum-well structures, is top-down-fabricated, on-chip micro-transferred, and converted into single micro-LEDs. Optically transparent and mechanically flexible multilayered graphene sheets are judiciously designed and introduced to the top and bottom surfaces of a single microdisk, thereby forming the top and bottom contacts. Using electroluminescence measurements, the fabricated micro-LEDs are characterized; they exhibit diode-like transport behaviors, spectroscopic light-out vs current ( L– I) characteristics, and polarization-resolved emission properties. We believe that the proposed all-graphene-contact approach offers a direct and easy current injection scheme and further helps electrify various on-chip transferrable microarchitectures.
APA, Harvard, Vancouver, ISO, and other styles
19

Moayedi, H., M. Habibi, H. Safarpour, M. Safarpour, and L. K. Foong. "Buckling and Frequency Responses of a Graphene Nanoplatelet Reinforced Composite Microdisk." International Journal of Applied Mechanics 11, no. 10 (December 2019): 1950102. http://dx.doi.org/10.1142/s1758825119501023.

Full text
Abstract:
This is the first research on the vibration and buckling analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical based generalized differential quadrature method (GDQM). The stresses and strains are obtained using the higher-order shear deformable theory (HOSDT). Rule of the mixture is employed to obtain varying mass density, thermal expansion, and Poisson’s ratio, while the module of elasticity is computed by modified Halpin–Tsai model. Governing equations and boundary conditions of the GPLRC microdisk are obtained by implementing Extended Hamilton’s principle. The results show that outer to inner ratios of the radius ([Formula: see text], ratios of length scale and nonlocal to thickness [Formula: see text] and [Formula: see text], and GPL weight fraction [Formula: see text] have a significant influence on the frequency and buckling characteristics of the GPLRC microdisk. Another necessary consequence is that by increasing the value of the [Formula: see text], the distribution of the displacement field extends from radial to tangent direction, especially in the lower mode numbers, this phenomenon appears much more remarkable. A useful suggestion of this research is that, for designing the GPLRC microdisk at the low value of the [Formula: see text], more attention should be paid to the [Formula: see text] and [Formula: see text], simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
20

Махов, И. С., А. А. Бекман, М. М. Кулагина, Ю. А. Гусева, Н. В. Крыжановская, А. М. Надточий, М. В. Максимов, and А. Е. Жуков. "Двухуровневая лазерная генерация в инжекционных микродисках на основе квантовых точек InAs/InGaAs." Письма в журнал технической физики 48, no. 12 (2022): 40. http://dx.doi.org/10.21883/pjtf.2022.12.52678.19242.

Full text
Abstract:
Spectral dependencies of the electroluminescence intensity of microdisk laser with a diameter of 31 µm with active region based on InAs/InGaAs quantum dots, operating in a continuous-wave regime, are investigated in a wide range of injection currents. Simultaneous lasing through the ground and excited states of quantum dots under intense excitation is demonstrated in injection microdisk laser for the first time. At low pumping powers lasing occurs via ground states of quantum dots only.
APA, Harvard, Vancouver, ISO, and other styles
21

CAO, H., W. FANG, V. A. PODOLSKIY, and E. E. NARIMANOV. "CHAOTIC MICROLASERS BASED ON DYNAMICAL LOCALIZATION." International Journal of Bifurcation and Chaos 16, no. 06 (June 2006): 1835–39. http://dx.doi.org/10.1142/s0218127406015738.

Full text
Abstract:
We report the first direct observation of lasing action from a dynamically localized mode in a microdisk resonator with rough boundary. In contrast to microlasers based on stable ray trajectories, the performance of our device is robust with respect to the boundary roughness and corresponding ray chaos, taking advantage of Anderson localization in angular momentum. The resonator design, although demonstrated here in GaAs-InAs microdisk laser, should be applicable to any lasers and sensors based on semiconductor or polymer materials.
APA, Harvard, Vancouver, ISO, and other styles
22

Mohideen, U., W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher. "GaAs/AlGaAs microdisk lasers." Applied Physics Letters 64, no. 15 (April 11, 1994): 1911–13. http://dx.doi.org/10.1063/1.111740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lu, Xiyuan, Jonathan Y. Lee, Philip X. L. Feng, and Qiang Lin. "Silicon carbide microdisk resonator." Optics Letters 38, no. 8 (April 10, 2013): 1304. http://dx.doi.org/10.1364/ol.38.001304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Chao, Linjie Zhou, Shengmei Zheng, and Andrew W. Poon. "Silicon Polygonal Microdisk Resonators." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 6 (November 2006): 1438–49. http://dx.doi.org/10.1109/jstqe.2006.883150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sun, Wenzhao, Kaiyang Wang, Zhiyuan Gu, Shumin Xiao, and Qinghai Song. "Tunable perovskite microdisk lasers." Nanoscale 8, no. 16 (2016): 8717–21. http://dx.doi.org/10.1039/c6nr00436a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Yi-Hao, Yi-Kuei Wu, and L. Jay Guo. "Photonic crystal microdisk lasers." Applied Physics Letters 98, no. 13 (March 28, 2011): 131109. http://dx.doi.org/10.1063/1.3567944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Djordjev, K., Sang-Jun Choi, Seung-June Choi, and P. D. Dapkus. "Active semiconductor microdisk devices." Journal of Lightwave Technology 20, no. 1 (2002): 105–13. http://dx.doi.org/10.1109/50.974825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mahler, Lukas, Alessandro Tredicucci, Fabio Beltram, Christoph Walther, Jérôme Faist, Bernd Witzigmann, Harvey E. Beere, and David A. Ritchie. "Vertically emitting microdisk lasers." Nature Photonics 3, no. 1 (November 30, 2008): 46–49. http://dx.doi.org/10.1038/nphoton.2008.248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Zhaoyu, Lan Yang, Victor Liu, Ting Hong, Kerry Vahala, and Axel Scherer. "Visible submicron microdisk lasers." Applied Physics Letters 90, no. 11 (March 12, 2007): 111119. http://dx.doi.org/10.1063/1.2714312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Scherbak, S. A., E. I. Moiseev, I. A. Melnichenko, Ju A. Guseva, M. V. Maximov, A. I. Lihachev, N. V. Kryzhanovskaya, A. A. Lipovskii, and A. E. Zhukov. "Influence of dielectric overlayers on self-heating of a microdisk laser." Journal of Physics: Conference Series 2086, no. 1 (December 1, 2021): 012100. http://dx.doi.org/10.1088/1742-6596/2086/1/012100.

Full text
Abstract:
Abstract We studied experimentally and numerically self-heating of a microdisk laser developed in the AlGaInAs material system and covered with dielectric layers. By experiments, we found that planarization of the microlaser with SU-8 photoresist significantly (almost, 2-fold) decreases the microlaser thermal resistance. Calculations demonstrate that a downward heat flux through the substrate to the heat sink is a dominant way of heat dissipation, and upward convection is much less relevant. Also, the calculations showed that covering microlaser with a TiO2 layer barely affects microdisk temperature but decreases heat localization in the structure.
APA, Harvard, Vancouver, ISO, and other styles
31

Фетисова, М. В., А. А. Корнев, А. С. Букатин, Н. А. Филатов, И. Е. Елисеев, Н. В. Крыжановская, И. В. Редуто, Э. И. Моисеев, М. В. Максимов, and А. Е. Жуков. "Использование микродисковых лазеров с квантовыми точками InAs/InGaAs для биодетектирования." Письма в журнал технической физики 45, no. 23 (2019): 10. http://dx.doi.org/10.21883/pjtf.2019.23.48711.17994n.

Full text
Abstract:
The paper demonstrates the possibility of using microdisk lasers 10 µm in diameter with an active region based on InAs/InGaAs quantum dots synthesized on GaAs substrates for biodetection. As a detectable object we used chimeric monoclonal antibodies to the CD20 protein covalently attached to the surface of microdisk lasers operating under optical pumping at room temperature in an aqueous medium. It was shown that the attached secondary antibodies cause an increase in the threshold power of lasing and also to an increase in the half-width of the resonant laser line.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang Jiaxian, 王加贤, 李俊杰 Li Junjie, 吴文广 Wu Wenguang, and 黄永箴 Huang Yongzhen. "Coupled-Mode Characteristics of Coupled-Microdisks and Single Microdisk Cavity with an Output Waveguide." Acta Optica Sinica 31, no. 1 (2011): 0106006. http://dx.doi.org/10.3788/aos201131.0106006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Моисеев, Э. И., М. В. Максимов, Н. В. Крыжановская, О. И. Симчук, М. М. Кулагина, С. А. Кадинская, M. Guina, and А. Е. Жуков. "Сравнительный анализ инжекционных микродисковых лазеров на основе квантовых ям InGaAsN и квантовых точек InAs/InGaAs." Физика и техника полупроводников 54, no. 2 (2020): 212. http://dx.doi.org/10.21883/ftp.2020.02.48907.9290.

Full text
Abstract:
The results are presented on a comparative analysis of the spectral and threshold characteristics of diode microdisk lasers operating at room temperature in a spectral range of 1.2xx μm with different active regions: InGaAsN/GaAs quantum wells or InAs/InGaAs/GaAs quantum dots. It was found that microlasers of a comparable size with quantum wells have higher lasing threshold compared to microlasers with quantum dots. At the same time, the latter are characterized by a noticeably smaller fraction of the radiated power with the laser modes. They are also characterized by a jump to excited-state optical transition lasing. The InGaAsN-based microdisk lasers lack these disadvantages.
APA, Harvard, Vancouver, ISO, and other styles
34

Жуков, А. Е., Н. В. Крыжановская, Э. И. Моисеев, М. М. Кулагина, С. А. Минтаиров, Н. А. Калюжный, А. М. Надточий, and М. В. Максимов. "Предельная температура генерации микродисковых лазеров." Физика и техника полупроводников 54, no. 6 (2020): 570. http://dx.doi.org/10.21883/ftp.2020.06.49387.9354.

Full text
Abstract:
A model is developed that allows one to analytically determine the threshold current of a microdisk laser taking into account its self-heating as a function of the ambient temperature and the microlaser diameter. It is shown that there exists a minimal diameter of a microdisk caused by self-heating, up to which it is possible to achieve continuous-wave lasing at a given temperature. Another manifestation of self-heating effect is the existence of a maximum operating temperature, which is the lower the smaller the diameter of the microlaser. Reasonable agreement between the predictions of the model and the available experimental data is shown.
APA, Harvard, Vancouver, ISO, and other styles
35

Prost, M., M. El Kurdi, A. Ghrib, S. Sauvage, X. Checoury, N. Zerounian, F. Aniel, et al. "Tensile-strained germanium microdisk electroluminescence." Optics Express 23, no. 5 (March 3, 2015): 6722. http://dx.doi.org/10.1364/oe.23.006722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Renner, Johannes, Lukas Worschech, Alfred Forchel, Suddhasatta Mahapatra, and Karl Brunner. "CdSe quantum dot microdisk laser." Applied Physics Letters 89, no. 23 (December 4, 2006): 231104. http://dx.doi.org/10.1063/1.2402263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Frateschi, N. C., and A. F. J. Levi. "The spectrum of microdisk lasers." Journal of Applied Physics 80, no. 2 (July 15, 1996): 644–53. http://dx.doi.org/10.1063/1.362873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

McCall, S. L., A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan. "Whispering‐gallery mode microdisk lasers." Applied Physics Letters 60, no. 3 (January 20, 1992): 289–91. http://dx.doi.org/10.1063/1.106688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lu, Xiyuan, Jonathan Y. Lee, Steven D. Rogers, and Qiang Lin. "Silicon carbide double-microdisk resonator." Optics Letters 44, no. 17 (August 23, 2019): 4295. http://dx.doi.org/10.1364/ol.44.004295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kuwata-Gonokami, M., S. Ozawa, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, and R. E. Slusher. "Polymer microdisk and microring lasers." Optics Letters 20, no. 20 (October 15, 1995): 2093. http://dx.doi.org/10.1364/ol.20.002093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Park, Sun-Wook, Min-Woo Kim, Kyong-Tae Park, Ja-Hyun Ku, and You-Shin No. "On-Chip Transferrable Microdisk Lasers." ACS Photonics 7, no. 12 (December 3, 2020): 3313–20. http://dx.doi.org/10.1021/acsphotonics.0c01330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fang, W., H. Cao, V. A. Podolskiy, and E. E. Narimanov. "Dynamical localization in microdisk lasers." Optics Express 13, no. 15 (2005): 5641. http://dx.doi.org/10.1364/opex.13.005641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jin, S. X., J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang. "GaN microdisk light emitting diodes." Applied Physics Letters 76, no. 5 (January 31, 2000): 631–33. http://dx.doi.org/10.1063/1.125841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Song, Q., H. Cao, S. T. Ho, and G. S. Solomon. "Near-IR subwavelength microdisk lasers." Applied Physics Letters 94, no. 6 (February 9, 2009): 061109. http://dx.doi.org/10.1063/1.3081106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Nan, Zhiyuan Gu, Kaiyang Wang, Meng Li, Li Ge, Shumin Xiao, and Qinghai Song. "Quasiparity-Time Symmetric Microdisk Laser." Laser & Photonics Reviews 11, no. 5 (September 2017): 1700052. http://dx.doi.org/10.1002/lpor.201700052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Abrantes, L. M., Martin Fleischmann, L. J. Li, Marvin Hawkins, Joseph W. Pons, John Daschbach, and Stanley Pons. "The behavior of microdisk electrodes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 262, no. 1-2 (April 1989): 55–66. http://dx.doi.org/10.1016/0022-0728(89)80011-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhou, Taojie, Kar Wei Ng, Xiankai Sun, and Zhaoyu Zhang. "Ultra-thin curved visible microdisk lasers with three-dimensional whispering gallery modes." Nanophotonics 9, no. 9 (July 4, 2020): 2997–3002. http://dx.doi.org/10.1515/nanoph-2020-0242.

Full text
Abstract:
AbstractMicrodisk lasers are important components in photonic integrated circuits (PICs), of which the whispering gallery modes (WGMs) are usually confined within a two-dimensional (2D) planar slab. Here, owing to the strain relaxation of quantum wells by wet-etching method, we present ultra-thin curved visible microdisk lasers with single-mode lasing emission and a high quality factor of ∼17,000, which enable a 3D spatial intensity distribution of WGMs and provide an extra degree of freedom for the confined photons compared with the conventional 2D in-plane WGMs. The curved microdisk lasers with a 3D spatial profile of WGMs may provide attractive applications in flexible and multilevel photon sources for the PICs.
APA, Harvard, Vancouver, ISO, and other styles
48

Liao, Qing, Zhen Wang, Qinggang Gao, Zhaoyi Zhang, Jiahuan Ren, Jianbo De, Xiaosen Zhang, Zhenzhen Xu, and Hongbing Fu. "The effect of 1D- and 2D-polymorphs on organic single-crystal optoelectronic devices: lasers and field effect transistors." Journal of Materials Chemistry C 6, no. 30 (2018): 7994–8002. http://dx.doi.org/10.1039/c8tc01584h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kim, Won-Kyung, Miyeon Cheon, Seunghun Lee, Tae-Woo Lee, Jung Jin Park, Chae Ryong Cho, Chul Hong Park, Ichiro Takeuchi, and Se-Young Jeong. "Magnetic domains in H-mediated Zn0.9Co0.1O microdisk arrays." RSC Advances 6, no. 62 (2016): 57375–79. http://dx.doi.org/10.1039/c6ra05746b.

Full text
Abstract:
We have fabricated and studied magnetic domains in the periodic ZnCoO microdisk structures at room temperature with MFM technique. The z-component of the remanent magnetic moment is uniform even though the value is much smaller than the saturation magnetic moment.
APA, Harvard, Vancouver, ISO, and other styles
50

LIU Jun, 刘军, 吴根柱 WU Gen-zhu, 陈达如 Chen Da-ru, 刘旭安 LIU Xu-an, and 卢启景 LU Qi-jing. "Metallo-dielectric Confined Semiconductor Microdisk Lasers." ACTA PHOTONICA SINICA 41, no. 12 (2012): 1464–69. http://dx.doi.org/10.3788/gzxb20124112.1464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography