Academic literature on the topic 'Microcystin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microcystin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microcystin"
Rohrlack, Thomas, Elke Dittmann, Thomas Börner, and Kirsten Christoffersen. "Effects of Cell-Bound Microcystins on Survival and Feeding of Daphnia spp." Applied and Environmental Microbiology 67, no. 8 (August 1, 2001): 3523–29. http://dx.doi.org/10.1128/aem.67.8.3523-3529.2001.
Full textJohansson, Emma, Catherine Legrand, Caroline Björnerås, Anna Godhe, Hanna Mazur-Marzec, Torbjörn Säll, and Karin Rengefors. "High Diversity of Microcystin Chemotypes within a Summer Bloom of the Cyanobacterium Microcystis botrys." Toxins 11, no. 12 (December 1, 2019): 698. http://dx.doi.org/10.3390/toxins11120698.
Full textBallot, Andreas, Morten Sandvik, Thomas Rundberget, Christo J. Botha, and Christopher O. Miles. "Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa." Marine and Freshwater Research 65, no. 2 (2014): 175. http://dx.doi.org/10.1071/mf13153.
Full textVaitomaa, Jaana, Anne Rantala, Katrianna Halinen, Leo Rouhiainen, Petra Tallberg, Lena Mokelke, and Kaarina Sivonen. "Quantitative Real-Time PCR for Determination of Microcystin Synthetase E Copy Numbers for Microcystis and Anabaena in Lakes." Applied and Environmental Microbiology 69, no. 12 (December 2003): 7289–97. http://dx.doi.org/10.1128/aem.69.12.7289-7297.2003.
Full textWang, Suqin, Siyu Yang, Jun Zuo, Chenlin Hu, Lirong Song, Nanqin Gan, and Peng Chen. "Simultaneous Removal of the Freshwater Bloom-Forming Cyanobacterium Microcystis and Cyanotoxin Microcystins via Combined Use of Algicidal Bacterial Filtrate and the Microcystin-Degrading Enzymatic Agent, MlrA." Microorganisms 9, no. 8 (July 27, 2021): 1594. http://dx.doi.org/10.3390/microorganisms9081594.
Full textHo, Lionel, Nawal Kayal, Rino Trolio, and Gayle Newcombe. "Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chloramination." Water Science and Technology 62, no. 2 (July 1, 2010): 442–50. http://dx.doi.org/10.2166/wst.2010.448.
Full textKurmayer, Rainer, Guntram Christiansen, and Ingrid Chorus. "The Abundance of Microcystin-Producing Genotypes Correlates Positively with Colony Size in Microcystis sp. and Determines Its Microcystin Net Production in Lake Wannsee." Applied and Environmental Microbiology 69, no. 2 (February 2003): 787–95. http://dx.doi.org/10.1128/aem.69.2.787-795.2003.
Full textBittencourt-Oliveira, MC, MC Oliveira, and E. Pinto. "Diversity of microcystin-producing genotypes in Brazilian strains of Microcystis (Cyanobacteria)." Brazilian Journal of Biology 71, no. 1 (February 2011): 209–16. http://dx.doi.org/10.1590/s1519-69842011000100030.
Full textWang, Hui, Cyndee L. Gruden, Thomas B. Bridgeman, and Justin D. Chaffin. "Detection and quantification of Microcystis spp. and microcystin-LR in Western Lake Erie during the summer of 2007." Water Science and Technology 60, no. 7 (October 1, 2009): 1837–46. http://dx.doi.org/10.2166/wst.2009.517.
Full textOh, Hee-Mock, Seog June Lee, Jee-Hwan Kim, Hee-Sik Kim, and Byung-Dae Yoon. "Seasonal Variation and Indirect Monitoring of Microcystin Concentrations in Daechung Reservoir, Korea." Applied and Environmental Microbiology 67, no. 4 (April 1, 2001): 1484–89. http://dx.doi.org/10.1128/aem.67.4.1484-1489.2001.
Full textDissertations / Theses on the topic "Microcystin"
Zilliges, Yvonne. "Molekulare Funktionsanalyse von Microcystin in Microcystis aeruginosa PCC 7806." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15782.
Full textMicrocystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis; however, the role of the peptide for the producing organismen is poorly understood. In this study we describe the first global approach to investigate this topic on a molecular level. Proteomic studies with M. aeruginosa PCC 7806 wild-type and several microcystin-deficient mutants indicated a physiological function for microcystin. Microcystin was shown to influence the abundance of several proteins which have an intra- or extracellular function. A prominent candidate is RubisCO, the key enzyme of the calvin cycle. RubisCO and other proteins, initially selected by 2D analysis, are putative cellular binding partners of microcystin. A potentially interaction mechanismen is the kovalent binding of microcystin to cysteine residues of the protein. Moreover, several knockouts of microcystin biosynthesis genes result in an overexpression of a putative morpho-type specific factor, named MrpC. This protein possibly mediates cell-cell interactions in Microcystis.
Phelan, Richard Reginald. "Microcystin enhances the fitness of microcystin producing cyanobacteria at high light intensities by either preventing or retarding photoinhibition." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1020957.
Full textPhelan, Richard Reginald. "A potential biological role for microcystin in photosynthesis in Microcystis Aeruginosa." Thesis, Nelson Mandela Metropolitan University, 2009. http://hdl.handle.net/10948/1285.
Full textDowning, T. G. "The role of nitrogen in the regulation of microcystin content in Microcystis aeruginosa." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50523.
Full textENGLISH ABSTRACT: Several genera of cyanobacteria produce a range of toxins. The increased rate of eutrophication of surface fresh waters due to anthropogenic inputs has resulted in more frequent and severe cyanobacterial bloom events. Such bloom events make impoundments unsuitable for recreational use and increase the cost of production of potable water due to the necessity for removal of toxins released from cells during the purification process. Microcystis aeruginosa is the major freshwater bloom-forming toxic cyanobacterium. Concentrations of the hepatotoxin, microcystin, are highly variable in blooms. Published literature on environmental conditions leading to increased microcystin production was often contradictory and in many cases did not consider all relevant parameters. However, environmental nitrogen and phosphorus, temperature and light, and growth rate were implicated in regulation of toxin content. The purpose of this work was therefore to investigate environmental factors (specifically nitrogen and phosphorus) and cellular activities (specifically carbon fixation and nitrogen uptake rates and growth rate) involved in the modulation of microcystin production in M. aeruginosa in order to clarify the role of these parameters, and in an attempt to identify regulatory mechanisms for microcystin production. Environmental nitrogen, phosphorus and growth rate were shown to co-modulate microcystin production in M. aeruginosa. Adequate phosphorus is required for photosynthetic carbon fixation. Phosphorus uptake by M. aeruginosa is strongly correlated with carbon fixation rate. Although microcystin content increased with increasing nitrogen:phosphorus ratios in culture medium, under phosphorus limitation microcystin content was lower irrespective of nitrogen concentrations. This observation and the requirements for fixed carbon for nitrogen assimilation therefore prompted investigation of the effects of cellular carbon fixation and nitrogen uptake in the modulation of microcystin production. Microcystin production was found to be enhanced when nitrogen uptake rate relative to carbon fixation rate was higher than that required for balanced growth. The cellular nitrogen:carbon ratio above which microcystin concentrations increased substantially, corresponded to the Redfield ratio for balanced growth. Investigation of potential regulatory mechanisms involving the cyanobacterial nitrogen regulator, NtcA, yielded putative NtcA binding sites indicative of repression in the microcystin synthetase gene cluster. In culture, the polypeptide synthetase module gene, mcyA, and ntcA were inversely expressed as a function of carbon-fixation:nitrogen-uptake potential. However, no increase or decrease in microcystin production could be linked to either glutamine, glutamate or a-ketoglutarate, metabolites that are involved in regulation of ntcA. The role of NtcA in regulation of microcystin production could therefore not be confirmed. In conclusion, these data suggest that microcystin production is metabolically regulated by cellular C:N balance and specific growth rate. The primary importance of nitrogen and carbon was demonstrated by a simple model where only nitrogen uptake, carbon fixation and growth rate were used to predict microcystin levels. The model also explains results previously described in literature. Similarly, an artificial neural network model was used to show that the carbon fixation dependence on phosphorus allows accurate prediction of microcystin levels based on growth rate and environmental nitrogen and phosphorus.
AFRIKAANSE OPSOMMING: Verskeie genera van sianobakterieë produseer 'n verskeidenheid van toksiene. Die toename in die tempo van eutrofikasie van varswater oppervlaktes as gevolg van antropogeniese insette veroorsaak al hoe meer en al hoe erger sianobakteriële infestasies. Dit veroorsaak probleme vir ontspanninggebruik van hierdie waters en verhoog die koste van produksie van drinkbare water as gevolg van die noodsaak om die toksiene wat deur die selle gedurende die suiweringsproses vrygelaat word te verwyder. Microcystis aeruginosa is die belangrikste varswater bloeisel-vormende toksiese sianobakterium. Die konsentrasie van die hepatotoksien mikrosistien is hoogs varieerbaar in sulke bloeisels. Gepubliseerde literatuur oor die omgewingskondisies wat lei na verhoogde mikrosistienproduksie is dikwels weersprekend en neem in vele gevalle nie al die relevante parameters in ag nie. Desnieteenstaande word omgewingstikstof, fosfor, temperatuur en lig, asook groeisnelheid, geïmpliseer in die regulering van toksieninhoud. Die doel van hierdie navorsing was dus om omgewingsfaktore (spesifiek stikstof en fosfor) en sellulêre aktiwiteite (spesifiek koolstoffiskering en die snelheid van stikstofopname en van groei) betrokke by die modulering van mikrosistienproduksie in M. aeruginosa te ondersoek in 'n poging om die rol van hierdie parameters te verstaan en om regulatoriese meganismes vir mikrosistienproduksie te identifiseer. In hierdie studie is aangetoon dat omgewingstikstof en fosfor sowel as groeisnelheid mikrosistienproduksie in M. aeruginosa ko-moduleer. Genoegsame fosfor word benodig vir fotosintetiese koolstoffiksering. Fosforopname deur M. aeruginosa korreleer sterk met die snelheid van koolstoffiksering. Alhoewel mikrosistieninhoud toegeneem het met 'n toename in die stikstof:fosfor verhouding in die kultuurmedium, was die mikrosistieninhoud onder kondisies van fosforlimitering laer ongeag die stikstofkonsentrasie. Hierdie waarneming, tesame met die noodsaak van gefikseerde koolstof vir stikstofassimilering, het gelei na 'n studie van die effekte van sellulêre koolstoffiksering and stikstofopname op die modulering van mikrosistienproduksie. Dit is gevind dat mikrosistienproduksie verhoog was wanneer die snelheid van stikstofopname relatief tot die snelheid van koolstoffiksering hoër was as die waarde wat benodig word vir gebalanseerde groei. Die sellulêre stikstof:koolstof verhouding waarbo mikrosistienkonsentrasies beduidend verhoog is stem ooreen met die Redfield verhouding vir gebalanseerde groei. 'n Ondersoek na potensiële reguleringsmeganismes waarby die sianobakteriële stikstofreguleerder NtcA betrokke is het gelei na die ontdekking van moontlike NtcA bindingseteis; dit kan dui op die repressie van die mikrosistiensintetase geengroepering. Onder kultuurkondisies is gevind dat die geen vir die polipeptiedsintetase module, mcyA, en ntcA omgekeerd uitgedruk word as 'n funksie van koolstofopname:stikstofopname potensiale. Geen toename of afname in mikrosistienproduksie kon egter gekoppel word aan óf glutamien, óf glutamaat, óf a-ketoglutaraat nie, metaboliete wat betrokke is by die regulering van ntcA. Die rol van NtcA in die regulering van mikrosistienproduksie kon dus nie bevestig word nie. Die gevolgtrekking is dus gemaak dat mikrosistienproduksie metabolies gereguleer word deur die C:N balans en die spesifieke groeisnelheid. Die primêre belang van stikstof en koolstof is gedemonstreer deur 'n eenvoudige model waarin slegs stikstofopname, koolstoffiksering en groeisnelheid gebruik word om mikrosistienvlakke te voorspel. Die model verklaar ook resultate wat tevore in die literatuur beskryf is. Soortgelyk is 'n artifisiële neurale netwerkmodel gebruik om te toon dat die afhanklikheid van koolstoffiksering van fosfor akkurate voorspelling van mikrosistienvlakke gebaseer of groeisnelheid en omgewingstikstof en fosfor moontlik maak.
Delaney, James M. "The biological activity of microcystin-LR, isolated from the cyanobacterium Microcystis aeruginosa against insects." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308015.
Full textSember, Craig Stewart. "The effect of nutrient levels and ratios on the growth of Microcystis aeruginosa and microcystin production." Thesis, University of Port Elizabeth, 2002. http://hdl.handle.net/10948/287.
Full textZemskov, Ivan [Verfasser]. "Total Synthesis of Microcystin-LR, Microcystin-LF, and Unnatural Derivatives thereof / Ivan Zemskov." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1169046711/34.
Full textMeissner, Sven Verfasser], and Elke [Akademischer Betreuer] [Dittmann. "Implications of Microcystin Production in Microcystis aeruginosa PCC 7806 / Sven Meissner ; Betreuer: Elke Dittmann-Thünemann." Potsdam : Universität Potsdam, 2015. http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75199.
Full textMeissner, Sven [Verfasser], and Elke [Akademischer Betreuer] Dittmann-Thünemann. "Implications of Microcystin Production in Microcystis aeruginosa PCC 7806 / Sven Meissner ; Betreuer: Elke Dittmann-Thünemann." Potsdam : Universität Potsdam, 2015. http://d-nb.info/1218398965/34.
Full textVelkme, Erik. "A novel method for antisense oligonucleotide gene expression manipulation in toxigenic cyanobacterial species, Microcystis aeruginosa." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2781.
Full textBooks on the topic "Microcystin"
Standing Committee of Analysts., ed. Determination of microcystin-LR in drinking waters by HPLC 1994. London: HMSO, 1994.
Find full textF, Watanabe Mariyo, ed. Toxic microcystis. Boca Raton, FL: CRC Press, 1996.
Find full textWei nang zao du su fen xi jian ce ji shu: Analysis and detection technology of microcystin. Beijing: Hua xue gong ye chu ban she, 2010.
Find full textJones, Geoffrey Brent. Phytoplankton and microcystin-LR in the Assiniboine River at Portage la Prairie, Manitoba, 1997-2001. Winnipeg, MB: Manitoba Conservation, 2002.
Find full textZurawell, Ronald William. An initial assessment of microcystin in raw and treated municipal drinking water derived from eutrophic surface waters in Alberta. Edmonton: Alberta Environment, Science and Standards Branch, 2002.
Find full textCyanobacterial toxins of drinking water supplies: Cylindrospermopsins and microcystins. Boca Raton, FL: CRC Press, 2005.
Find full textWatanabe, Masayuki. Nihon aoko daizukan: The freshwater planktonic blue-greens of Japan with photographs and illustrations / by Masayuki Watanabe. Tōkyō: Seibundō Shinkōsha, 2007.
Find full textToivola, Diana. Microcystins: Potent tools to study serine/threonine protein phosphatases and their role in cytoskeletal regulation. Åbo: Åbo Akademi University Press, 1998.
Find full textMeriluoto, Jussi. Liquid chromatographic analysis of cyanobacterial peptide hepatotoxins. Åbo: Åbo Akademis förlag, 1990.
Find full textInternational Agency for Research on Cancer and World Health Organization, eds. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. Lyon, France: International Agency for Research on Cancer, 2010.
Find full textBook chapters on the topic "Microcystin"
Fujiki, Hirota. "Microcystin-LR." In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7069-3.
Full textFujiki, Hirota. "Microcystin-LR." In Encyclopedia of Cancer, 2828–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_7069.
Full textChorus, Ingrid. "Factors Controlling Cellular Microcystin Content." In Cyanotoxins, 102–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59514-1_3.
Full textKim, Hye Ryoung, Chi Kyung Kim, Tae Seok Ahn, Soon Ae Yoo, and Dong Hun Lee. "Effects of Temperature and Light on Microcystin Synthetase Gene Transcription in Microcystis Aeruginosa." In Key Engineering Materials, 606–11. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-958-x.606.
Full textXin, Qing, Yi Zhang, and Gaofeng Yan. "Adsorption of Microcystin-LR by Carbon Xerogel." In Lecture Notes in Electrical Engineering, 197–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25905-0_27.
Full textFerrari, Alejandro, Marcia Andrea Ruiz, and Ana Laura Ruibal-Conti. "Antibodies as Biomarkers: Effect of Microcystin Exposure." In Biomarkers in Toxicology, 1–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87225-0_6-1.
Full textFerrari, Alejandro, Marcia Andrea Ruiz, and Ana Laura Ruibal-Conti. "Antibodies as Biomarkers: Effect of Microcystin Exposure." In Biomarkers in Toxicology, 85–106. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-07392-2_6.
Full textChang, Shu-Chi, Bo-Li Lu, Jiang-Jen Lin, Yen-Hsien Li, and Maw-Rong Lee. "A Method to Prepare Magnetic Nanosilicate Platelets for Effective Removal of Microcystis aeruginosa and Microcystin-LR." In Methods in Molecular Biology, 85–94. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6958-6_8.
Full textArivizhivendhan, K. V., M. Jothieshwari, S. Swarnalatha, R. Regina Mary, and G. Sekaran. "Magnetic Extracellular Polymer Composite for the Effective Removal of Microcystin." In Water Science and Technology Library, 73–80. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5795-3_7.
Full textCampàs, Monica, Beatriz Prieto-Simón, and Régis Rouillon. "Biosensors for Secondary Metabolites, Two Case Studies: Ochratoxin A and Microcystin." In Advances in Experimental Medicine and Biology, 282–92. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7347-4_21.
Full textConference papers on the topic "Microcystin"
Yi, Cheng-wu, Jing Cai, Hong-xiang Ou, Hong Liu, Qian-qian Li, Jin-yu Chu, and Cheng-gang He. "Extraction and Detection of Microcystin-LR from Microcystic Aeruginosa." In 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5660565.
Full textHendrickson, Olga Dmitrievna, Elena Anatolievna Zvereva, Ksenia Alekseevna Maksimova, Alexandra Pavlovna Bondarenko, and Sergey Aleksandrovich Eremin. "FLUORESCENT POLARIZATION IMMUNOASSAY OF MICROCYSTIN-LR." In NEW TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2021. http://dx.doi.org/10.47501/978-5-6044060-1-4.31.
Full textFields, Chad. "SURVEILLANCE OF MICROCYSTIN IN IOWA’S DRINKING WATER." In 52nd Annual North-Central GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018nc-312716.
Full textHuang, Pei, and An Xu. "Genotoxic Effects of Microcystin-LR in Mammalian Cells." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162883.
Full textChen, Xiaoguo, Shenghu Zhang, Yang Zhang, and Bangding Xiao. "Purification of Microcystin-LR by Solid-Phase Extraction Procedure." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163264.
Full textWu, Ming-Song, Ying Ji, Jun-Li Huang, Jiao Fu, Yu-Ling Zhang, and Yu Tian. "Effects and Kinetics of Chlorine Dioxide Removal Microcystin-RR." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162728.
Full textBriscoe, Jayson L., and Sang-Yeon Cho. "Low level detection of microcystin using a plasmonic biosensor." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6984996.
Full textXiaoguo Chen, Fan Hu, Weicheng Zhang, Yue Hu, Ruiting Yan, and Bangding Xiao. "Toxicities of microcystin LR on caenorhabditis elegans and their offspring." In 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893485.
Full text"The Dominance Of Microcystis Species and Microcystin Congeners in a Small Holder Fish Farm, A Case Study of Vhembe District, South Africa." In Nov. 19-20 2018 Cape Town (South Africa). Eminent Association of Pioneers, 2018. http://dx.doi.org/10.17758/eares4.eap1118202.
Full textAndrade, Joana, Catarina Silva, Luis Vieira, Miguel Pinto, João Paulo Gomes, and Elisabete Valério. "Assessing the Reason Why Heterotrophic Bacteria Present in Aquatic Environments Are Not Affected by Microcystins and Unraveling Alternative Genes for Microcystin Degradation." In The 7th Iberian Congress on Cyanotoxins/3rd Iberoamerican Congress on Cyanotoxins. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/blsf2022014033.
Full textReports on the topic "Microcystin"
Robinson, Nancy A., Judith G. Pace, Charles F. Matson, George A. Miura, and Wade B. Lawrence. Toxicokinetics of (3H)Microcystin-LR in Mice. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada221204.
Full textRobinson, Nancy A., Judith G. Pace, Charles F. Matson, George A. Miura, and Wade B. Lawrence. Tissue Distribution, Excretion, and Hepatic Biotransformation of Microcystin-LR in Mice. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada232418.
Full textThomas, Catherine, Afrachanna Butler, Victor Medina, Chris Griggs, and Alan Katzenmeyer. Physicochemical treatment of cyanobacteria and microcystin by hydrodynamic cavitation and advanced oxidation. Engineer Research and Development Center (U.S.), March 2019. http://dx.doi.org/10.21079/11681/32313.
Full textMcQueen, Andrew, Michael Habberfield,, Karen Keil, and Burton Suedel. Fate and effects of microcystin in nearshore and upland environments : a literature review. Engineer Research and Development Center (U.S.), January 2020. http://dx.doi.org/10.21079/11681/35274.
Full textCalomeni, Alyssa, Andrew McQueen, Ciera Kinley-Baird, and Gerard Clyde. Identification and preventative treatment of overwintering cyanobacteria in sediments : a literature review. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/45063.
Full textMoores, Lee C., P. U. Ashvin, I. Fernando, and Garret W. George. Synthesis of 2-Methoxypropyl Benzene for Epitope Imprinting. U.S. Army Engineer Research and Development Center, July 2022. http://dx.doi.org/10.21079/11681/44883.
Full textPokrzywinski, Kaytee, Cliff Morgan, Scott Bourne, Molly Reif, Kenneth Matheson, and Shea Hammond. A novel laboratory method for the detection and identification of cyanobacteria using hyperspectral imaging : hyperspectral imaging for cyanobacteria detection. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40966.
Full text