Journal articles on the topic 'MICROBIALLY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MICROBIALLY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Allsup, Cassandra M., Isabelle George, and Richard A. Lankau. "Shifting microbial communities can enhance tree tolerance to changing climates." Science 380, no. 6647 (May 26, 2023): 835–40. http://dx.doi.org/10.1126/science.adf2027.
Full textWang, Dongsheng, Fang Guan, Chao Feng, Krishnamurthy Mathivanan, Ruiyong Zhang, and Wolfgang Sand. "Review on Microbially Influenced Concrete Corrosion." Microorganisms 11, no. 8 (August 12, 2023): 2076. http://dx.doi.org/10.3390/microorganisms11082076.
Full textPacton, M., S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osintcev, and C. Vasconcelos. "The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications." Biogeosciences 10, no. 9 (September 27, 2013): 6115–30. http://dx.doi.org/10.5194/bg-10-6115-2013.
Full textPacton, M., S. F. M. Breitenbach, F. A. Lechleitner, A. Vaks, C. Rollion-Bard, O. S. Gutareva, A. V. Osinzev, and C. Vasconcelos. "The role of microorganisms on the formation of a stalactite in Botovskaya Cave, Siberia – palaeoenvironmental implications." Biogeosciences Discussions 10, no. 4 (April 8, 2013): 6563–603. http://dx.doi.org/10.5194/bgd-10-6563-2013.
Full textSchindler, Frank, Lutz Merbold, Stefan Karlsson, Anna Rosa Sprocati, and Erika Kothe. "Seasonal change of microbial activity in microbially aided bioremediation." Journal of Geochemical Exploration 174 (March 2017): 4–9. http://dx.doi.org/10.1016/j.gexplo.2016.04.001.
Full textJiang, Weijian, Wen Yi, and Lei Zhou. "Fibre-Microbial Curing Tests and Slope Stability Analysis." Applied Sciences 13, no. 12 (June 12, 2023): 7051. http://dx.doi.org/10.3390/app13127051.
Full textEmmert, Simon, Katherine Davis, Robin Gerlach, and Holger Class. "The Role of Retardation, Attachment and Detachment Processes during Microbial Coal-Bed Methane Production after Organic Amendment." Water 12, no. 11 (October 27, 2020): 3008. http://dx.doi.org/10.3390/w12113008.
Full textPolgári, Márta, Ildikó Gyollai, Szaniszló Bérczi, Miklós Veres, Arnold Gucsik, and Pál-Molnár Elemér. "Microbial mediation of textures and minerals – terrestrial or parent body processes?" Open Astronomy 28, no. 1 (January 1, 2019): 40–60. http://dx.doi.org/10.1515/astro-2019-0004.
Full textBosak, Tanja, Giulio Mariotti, Francis A. MacDonald, J. Taylor Perron, and Sara B. Pruss. "Microbial Sedimentology of Stromatolites in Neoproterozoic Cap Carbonates." Paleontological Society Papers 19 (October 2013): 51–76. http://dx.doi.org/10.1017/s1089332600002680.
Full textZhu, Xiang Y., John Lubeck, and John J. Kilbane. "Characterization of Microbial Communities in Gas Industry Pipelines." Applied and Environmental Microbiology 69, no. 9 (September 2003): 5354–63. http://dx.doi.org/10.1128/aem.69.9.5354-5363.2003.
Full textKim, Byung Hong, Swee Su Lim, Wan Ramli Wan Daud, Geoffrey Michael Gadd, and In Seop Chang. "The biocathode of microbial electrochemical systems and microbially-influenced corrosion." Bioresource Technology 190 (August 2015): 395–401. http://dx.doi.org/10.1016/j.biortech.2015.04.084.
Full textChandraprabha, M. N., and K. A. Natarajan. "Microbially Induced Mineral Beneficiation." Mineral Processing and Extractive Metallurgy Review 31, no. 1 (December 29, 2009): 1–29. http://dx.doi.org/10.1080/08827500903404682.
Full textRoels, Joris, Gwen Huyghe, and Willy Verstraete. "Microbially mediated phosphine emission." Science of The Total Environment 338, no. 3 (February 2005): 253–65. http://dx.doi.org/10.1016/j.scitotenv.2004.07.016.
Full textRouwane, Asmaa, Marion Rabiet, Isabelle Bourven, Malgorzata Grybos, Lucie Mallet, and Gilles Guibaud. "Role of microbial reducing activity in antimony and arsenic release from an unpolluted wetland soil: a lab scale study using sodium azide as a microbial inhibiting agent." Environmental Chemistry 13, no. 6 (2016): 945. http://dx.doi.org/10.1071/en16029.
Full textMarsili, Enrico, Staffan Kjelleberg, and Scott A. Rice. "Mixed community biofilms and microbially influenced corrosion." Microbiology Australia 39, no. 3 (2018): 152. http://dx.doi.org/10.1071/ma18046.
Full textRincón-Tomás, Blanca, Bahar Khonsari, Dominik Mühlen, Christian Wickbold, Nadine Schäfer, Dorothea Hause-Reitner, Michael Hoppert, and Joachim Reitner. "Manganese carbonates as possible biogenic relics in Archean settings." International Journal of Astrobiology 15, no. 3 (July 2016): 219–29. http://dx.doi.org/10.1017/s1473550416000264.
Full textOkyay, Tugba O., Hang N. Nguyen, Sarah L. Castro, and Debora F. Rodrigues. "CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation." Science of The Total Environment 572 (December 2016): 671–80. http://dx.doi.org/10.1016/j.scitotenv.2016.06.199.
Full textPolgári, Márta, and Ildikó Gyollai. "Comparative Study of Formation Conditions of Fe-Mn Ore Microbialites Based on Mineral Assemblages: A Critical Self- Overview." Minerals 12, no. 10 (October 9, 2022): 1273. http://dx.doi.org/10.3390/min12101273.
Full textEzeh, Chukwuemeka Cornelius, Chinonye Jennifer Obi, and Anene Nwabu Moneke. "Application of microbial synthesized phytohormones in the management of environmental impacts on soils." Bio-Research 20, no. 1 (February 17, 2022): 1409–25. http://dx.doi.org/10.4314/br.v20i1.3.
Full textWackett, Lawrence P. "Microbially produced flavors and fragrances." Microbial Biotechnology 14, no. 6 (November 2021): 2711–12. http://dx.doi.org/10.1111/1751-7915.13961.
Full textMiller, Kathleen W. "Microbially mediated sulfidization of coal." Fuel 72, no. 12 (December 1993): 1663–66. http://dx.doi.org/10.1016/0016-2361(93)90352-3.
Full textDrewello, R., and R. Weissmann. "Microbially influenced corrosion of glass." Applied Microbiology and Biotechnology 47, no. 4 (April 14, 1997): 337–46. http://dx.doi.org/10.1007/s002530050937.
Full textDavison, B. H., D. M. Nicklaus, A. Misra, S. N. Lewis, and B. D. Faison. "Utilization of microbially solubilized coal." Applied Biochemistry and Biotechnology 24-25, no. 1 (March 1990): 447–56. http://dx.doi.org/10.1007/bf02920269.
Full textFriesen, Maren L., Stephanie S. Porter, Scott C. Stark, Eric J. von Wettberg, Joel L. Sachs, and Esperanza Martinez-Romero. "Microbially Mediated Plant Functional Traits." Annual Review of Ecology, Evolution, and Systematics 42, no. 1 (December 2011): 23–46. http://dx.doi.org/10.1146/annurev-ecolsys-102710-145039.
Full textVidela, Hector A., and William G. Characklis. "Biofouling and microbially influenced corrosion." International Biodeterioration & Biodegradation 29, no. 3-4 (January 1992): 195–212. http://dx.doi.org/10.1016/0964-8305(92)90044-o.
Full textChaudhri, Apoorvi. "Microbially Derived Pectinases: A Review." IOSR Journal of Pharmacy and Biological Sciences 2, no. 2 (2012): 1–5. http://dx.doi.org/10.9790/3008-0220105.
Full textLittle, B. J., D. J. Blackwood, J. Hinks, F. M. Lauro, E. Marsili, A. Okamoto, S. A. Rice, S. A. Wade, and H. C. Flemming. "Microbially influenced corrosion—Any progress?" Corrosion Science 170 (July 2020): 108641. http://dx.doi.org/10.1016/j.corsci.2020.108641.
Full textSong, Chenpeng, and Derek Elsworth. "Microbially Induced Calcium Carbonate Plugging for Enhanced Oil Recovery." Geofluids 2020 (July 2, 2020): 1–10. http://dx.doi.org/10.1155/2020/5921789.
Full textKaksonen, Anna H., Naomi J. Boxall, Tsing Bohu, Kayley Usher, Christina Morris, Pan Yu Wong, and Ka Yu Cheng. "Recent Advances in Biomining and Microbial Characterisation." Solid State Phenomena 262 (August 2017): 33–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.262.33.
Full textOrtiz-Bernad, Irene, Robert T. Anderson, Helen A. Vrionis, and Derek R. Lovley. "Resistance of Solid-Phase U(VI) to Microbial Reduction during In Situ Bioremediation of Uranium-Contaminated Groundwater." Applied and Environmental Microbiology 70, no. 12 (December 2004): 7558–60. http://dx.doi.org/10.1128/aem.70.12.7558-7560.2004.
Full textLehtola, Markku J., Ilkka T. Miettinen, Terttu Vartiainen, and Pertti J. Martikainen. "A New Sensitive Bioassay for Determination of Microbially Available Phosphorus in Water." Applied and Environmental Microbiology 65, no. 5 (May 1, 1999): 2032–34. http://dx.doi.org/10.1128/aem.65.5.2032-2034.1999.
Full textCarpén, Leena, Pauliina Rajala, and Malin Bomberg. "Microbially Induced Corrosion in Deep Bedrock." Advanced Materials Research 1130 (November 2015): 75–78. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.75.
Full textPhan, Hoang C., Linda L. Blackall, and Scott A. Wade. "Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel." Corrosion and Materials Degradation 2, no. 2 (March 25, 2021): 133–49. http://dx.doi.org/10.3390/cmd2020008.
Full textRen, Zhiyong, Hengjing Yan, Wei Wang, Matthew M. Mench, and John M. Regan. "Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales." Environmental Science & Technology 45, no. 6 (March 15, 2011): 2435–41. http://dx.doi.org/10.1021/es103115a.
Full textLehtola, M. "Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water." Water Research 35, no. 7 (May 2001): 1635–40. http://dx.doi.org/10.1016/s0043-1354(00)00449-8.
Full textMinto, James M., Qian Tan, Rebecca J. Lunn, Gráinne El Mountassir, Hongxian Guo, and Xiaohui Cheng. "‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation." Construction and Building Materials 180 (August 2018): 44–54. http://dx.doi.org/10.1016/j.conbuildmat.2018.05.200.
Full textZhang, Jin-Na, Qing-Liang Zhao, Peter Aelterman, Shi-Jie You, and Jun-Qiu Jiang. "Electricity generation in a microbial fuel cell with a microbially catalyzed cathode." Biotechnology Letters 30, no. 10 (June 18, 2008): 1771–76. http://dx.doi.org/10.1007/s10529-008-9751-0.
Full textSenthilmurugan, Balasubramanian, Jayaprakash Sandhala Radhakrishnan, Morten Poulsen, Victor Hugo Arana, Misfera Al‐Qahtani, and Abdullah Fadel Jamsheer. "Microbially induced corrosion in oilfield: microbial quantification and optimization of biocide application." Journal of Chemical Technology & Biotechnology 94, no. 8 (May 29, 2019): 2640–50. http://dx.doi.org/10.1002/jctb.6073.
Full textLewandowski, Z., R. Bakke, and W. G. Characklis. "Nitrification and Autotrophic Denitrification in Calcium Alginate Beads." Water Science and Technology 19, no. 1-2 (January 1, 1987): 175–82. http://dx.doi.org/10.2166/wst.1987.0199.
Full textBertham, Yudhi Harini, Abimanyu Dipo Nusantara, Bambang Gonggo Murcitro, and Zainal Arifin. "PERUBAHAN KARAKTERISTIK TANAH DAN PENAMPILAN BEBERAPA VARIETAS PADI GOGO PADA KAWASAN PESISIR DENGAN PENAMBAHAN PUPUK HAYATI DAN BIOKOMPOS." Jurnal Ilmu-Ilmu Pertanian Indonesia 22, no. 2 (December 3, 2020): 79–84. http://dx.doi.org/10.31186/jipi.22.2.79-84.
Full textNatarajan, K. A. "Biofouling and Microbially Influenced Corrosion of Stainless Steels." Advanced Materials Research 794 (September 2013): 539–51. http://dx.doi.org/10.4028/www.scientific.net/amr.794.539.
Full textLin, Wenbin, Wei Lin, Xiaohui Cheng, Guozhou Chen, and Yusuf Cagatay Ersan. "Microbially Induced Desaturation and Carbonate Precipitation through Denitrification: A Review." Applied Sciences 11, no. 17 (August 25, 2021): 7842. http://dx.doi.org/10.3390/app11177842.
Full textLi, Mengmeng, Hongshi Ma, Fei Han, Dong Zhai, Bingjun Zhang, Yuhua Sun, Tian Li, Lei Chen, and Chengtie Wu. "Microbially Catalyzed Biomaterials for Bone Regeneration." Advanced Materials 33, no. 49 (October 10, 2021): 2104829. http://dx.doi.org/10.1002/adma.202104829.
Full textKang, Serku, Yumi Kim, Young Jae Lee, and Yul Roh. "Microbially Induced Precipitation of Strontianite Nanoparticles." Journal of Nanoscience and Nanotechnology 15, no. 7 (July 1, 2015): 5362–65. http://dx.doi.org/10.1166/jnn.2015.10413.
Full textVidela, Hector A. "Microbially induced corrosion: an updated overview." International Biodeterioration & Biodegradation 48, no. 1-4 (January 2001): 176–201. http://dx.doi.org/10.1016/s0964-8305(01)00081-6.
Full textGuezennec, J. G. "Cathodic protection and microbially induced corrosion." International Biodeterioration & Biodegradation 34, no. 3-4 (January 1994): 275–88. http://dx.doi.org/10.1016/0964-8305(94)90088-4.
Full textKlaus, T., R. Joerger, E. Olsson, and C. G. Granqvist. "Silver-based crystalline nanoparticles, microbially fabricated." Proceedings of the National Academy of Sciences 96, no. 24 (November 23, 1999): 13611–14. http://dx.doi.org/10.1073/pnas.96.24.13611.
Full textFlannery, David T., Abigail C. Allwood, Robert Hodyss, Roger Everett Summons, Michael Tuite, Malcolm R. Walter, and Kenneth H. Williford. "Microbially influenced formation of Neoarchean ooids." Geobiology 17, no. 2 (November 18, 2018): 151–60. http://dx.doi.org/10.1111/gbi.12321.
Full textDifferding, Moira K., and Noel T. Mueller. "Are household disinfectants microbially mediated obesogens?" Canadian Medical Association Journal 190, no. 37 (September 16, 2018): E1095—E1096. http://dx.doi.org/10.1503/cmaj.181134.
Full textShaffer, Justin P., Louis-Félix Nothias, Luke R. Thompson, Jon G. Sanders, Rodolfo A. Salido, Sneha P. Couvillion, Asker D. Brejnrod, et al. "Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity." Nature Microbiology 7, no. 12 (November 28, 2022): 2128–50. http://dx.doi.org/10.1038/s41564-022-01266-x.
Full text