Academic literature on the topic 'Microbial samples'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial samples.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microbial samples"
Fierer, Noah, and Craig Cary. "Don't let microbial samples perish." Nature 512, no. 7514 (August 2014): 253. http://dx.doi.org/10.1038/512253b.
Full textHaas, Charles N. "Microbial Sampling: Is It Better to Sample Many Times or Use Large Samples?" Water Science and Technology 27, no. 3-4 (February 1, 1993): 19–25. http://dx.doi.org/10.2166/wst.1993.0314.
Full textSharifullina, D. M., R. M. Vasil’eva, T. I. Yakovleva, E. G. Nikolaeva, O. K. Pozdeev, A. P. Lozhkin, and R. N. Khayrullin. "Microbial landscape of atherosclerotic plaques biopsy samples." Kazan medical journal 96, no. 6 (December 15, 2015): 979–82. http://dx.doi.org/10.17750/kmj2015-979.
Full textCiafardini, G., and B. A. Zullo. "Assay of microbial enzymes in opaque samples." Journal of Microbiological Methods 34, no. 1 (September 1998): 73–79. http://dx.doi.org/10.1016/s0167-7012(98)00071-2.
Full textHyvärinen, A., H. Rintala, S. Kokkonen, L. Larsson, and A. Nevalainen. "Microbial Exposure Assessment With House Dust Samples." Epidemiology 17, Suppl (November 2006): S227. http://dx.doi.org/10.1097/00001648-200611001-00582.
Full textJufri, Rhezqy Furwati. "Microbial Isolation." Journal La Lifesci 1, no. 1 (January 30, 2020): 18–23. http://dx.doi.org/10.37899/journallalifesci.v1i1.33.
Full textBerthod, Alain, Mike A. Rodriguez, Marco Girod, and Daniel W. Armstrong. "Use of microbubbles in capillary electrophoresis for sample segregation when focusing microbial samples." Journal of Separation Science 25, no. 15-17 (November 1, 2002): 988–95. http://dx.doi.org/10.1002/1615-9314(20021101)25:15/17<988::aid-jssc988>3.0.co;2-i.
Full textClarke, Erik L., Abigail P. Lauder, Casey E. Hofstaedter, Young Hwang, Ayannah S. Fitzgerald, Ize Imai, Wojciech Biernat, et al. "Microbial Lineages in Sarcoidosis. A Metagenomic Analysis Tailored for Low–Microbial Content Samples." American Journal of Respiratory and Critical Care Medicine 197, no. 2 (January 15, 2018): 225–34. http://dx.doi.org/10.1164/rccm.201705-0891oc.
Full textPoretsky, Rachel S., Nasreen Bano, Alison Buchan, Gary LeCleir, Jutta Kleikemper, Maria Pickering, Whitney M. Pate, Mary Ann Moran, and James T. Hollibaugh. "Analysis of Microbial Gene Transcripts in Environmental Samples†." Applied and Environmental Microbiology 71, no. 7 (July 2005): 4121–26. http://dx.doi.org/10.1128/aem.71.7.4121-4126.2005.
Full textWebster, JoAnn J., Ginger J. Hampton, John T. Wilson, William C. Ghiorse, and Franklin R. Leach. "Determination of Microbial Cell Numbers in Subsurface Samples." Ground Water 23, no. 1 (January 1985): 17–25. http://dx.doi.org/10.1111/j.1745-6584.1985.tb02775.x.
Full textDissertations / Theses on the topic "Microbial samples"
Allevi, Richard Paul. "Quantifying Potential Sources of Microbial Contamination in Household Drinking Water Samples." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/42011.
Full textMaster of Science
Skutas, Jorie L. "Microbial and Genomic Analysis of Environmental Samples in Search of Pathogenic Salmonella." NSUWorks, 2017. http://nsuworks.nova.edu/occ_stuetd/461.
Full textMorin, Felix. "Development and Environmental Application of Microbial Bioreporters of Oxidative Stress." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33027.
Full textHsu, Kuei-Ling C. "Variability of two sampling methods in plaque samples." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008m/hsu.pdf.
Full textGalada, Ncebakazi. "Metagenomic analysis and characterization of microbial diversity from hydrothermal samples of El Tatio geyser field, Chile." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4014.
Full textThe El Tatio geyser field (ETGF) is the largest known geothermal field in Chile, forming part of a wide spectrum of extremophilic habitats in the country. The ETGF is NaCl rich, with high concentrations of toxic elements such as Li, As and Cs, which are contributed mainly by volcanic activities in the region. Most previous studies in the area have focused on the geology and geochemistry for mining purposes, as well as on the search for geothermal resources for power generation. Very little is currently known about the composition of the microbial communities of the ETGF, which makes the study reported here of particular novelty.A metagenomic approach, involving the amplification of 16S rRNA gene phylogenetic markers from metagenomic DNA was used to investigate seven different sites within the geyser field. The sample sites were characterized by high temperatures (80-85 °C) and a range of pH values (6.3-8). Various molecular methods, including clone library construction and PCR-DGGE analyses were used to target a wide range of microbial populations within the ETGF sites. Multivariate analysis was also applied to assess differences in the microbial diversity from different sites and to correlate microbial diversity with environmental conditions. Culture-dependent screening of novel nanoarchaeal species was also undertaken.These were coupled with PCR and other detection methods such as fluorescent in situ hybridization (FISH) to trace the presence of nanoarchaeal signals from enriched cultures.The results have shown that the ETGF encompasses a limited microbial diversity represented by only 30 dominant phylotypes, and most likely due to the toxic chemical content of the geyser field. The microbial representatives identified were assigned to OTUs from archaeal,nanoarchaeal and bacterial taxonomic groups. The dominant microbial taxa included members of the Proteobacteria, Firmicutes, Aquificae, Actinobacteria, Euryarchaeota(Halobacteriales, Archaeoglobales), Crenarchaeota (Thermoproteales, Desulfurococcales),together with uncultured representatives of the bacteria, archaea and nanoarchaeota. Notably,representatives of mesophilic, thermophilic and hyperthermophilic taxonomic groups were all detected in ETGF samples. This is attributed to various factors such as temperature gradients and dispersal mechanisms (e.g. natural forces such as rain and volcanic activities). Principal component analysis (PCA) showed significant differences (P < 0.05) in the microbial diversity of the ETGF samples, with principal components (based on the sequenced species from both 16S rRNA clone libraries and PCR-DGGE profiles) explaining up to 62.7% of variance. Furthermore, CCA showed that the differences in phylogenetic diversity were most influenced by temperature and salinity. This was also confirmed by the sequencing results,which showed that hyperthermophilic and haloarchaeal taxa were dominant in the ETGF sites. However, conductivity and pH were also found to contribute to variations in the microbial diversity of the experimental samples, with TDS (total dissolved solids) being a less influential factor. Attempts to generate nanoarchaeal-host co-cultures, and to recover sufficient nanoarchaeal genomic DNA for fosmid and/or large insert cloning for comparative genome analysis, were unsuccessful.This study is the first to employ metagenomic approaches to analyse the microbial diversity of sites in the ETGF, and has expanded our knowledge of microbiota present in this geyser field.
Moreno, Lilliana I. "The Effect of Sample and Sample Matrix on DNA Processing: Mechanisms for the Detection and Management of Inhibition in Forensic Samples." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1764.
Full textHe, Jizheng, and n/a. "Molecular Biological Studies of Soil Microbial Communities Under Different Management Practices in Forest Ecosystems of Queensland." Griffith University. Australian School of Environmental Studies, 2005. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20060309.095702.
Full textRadtke, Kristin. "Microbial biodiversity in permafrost and ground ice samples and survival of High Arctic isolate Cryptococcus NP33 under simulated Martian conditions." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103609.
Full textCette thèse contient deux études : 1) la biodiversité de différents types de glacesde sol de l'Arctique et du Grand Arctique, de même que la survie de Cryptococcus NP33dans des conditions martiennes simulées pendant 41 jours. La première étude impliquait des analyses dépendantes et indépendantes des conditions de culture pour évaluer les communautés microbiennes dans une congère névée enterrée, un glacier enterré, un pingo et des coins de glace. Les nombres de cellules totales et les nombres de cellules culturées dans les différents types de glaces de sol variaient (104 – 108 cellulesmL-1 nombre total; 0- 105 CFUmL-1 cellules culturées), et étaient que très faiblement dépendants de l'âge du iispécimen. Les nombres de cellules culturées étaient constamment plus élevées dans les coins de glace. Actinobacteria dominait les isolats de chaque spécimen. Un pyroséquençage bactérien d'un coin de glace a révélé une dominance (>50% desséquences) de Gammaproteobacteria. Dans une librairie de clones d'Archées du glacier enterré, les clones avaient peu de similarité à des isolats environnementaux, mais étaient similaires (>90%) à des clones environnementaux non-caractérisés d'environnements marins. Dans une librairie de clones de Bactéries du pingo, les clones étaient très similaires à des isolats et des clones provenant de cryo-environnements et d'environnements de sol. Pour la simulation martienne, Cryptococcus NP33 a été choisicomme organisme candidat suite à des expériments pour sélectionner des organismes résistant à la dessiccation, au froid et aux concentrations élevées de sel. Au cours de 41 jours dans le simulateur, Cryptococcus NP33 avait une demi-vie de 10.1 jours dans le soleil simulé et 16.1 jours dans le noir. Halorubrum avait un taux de survie de 100%(demi-vie estimée de ~70 - ∞ jours), tandis que d'autres organismes avaient une demi-vie beaucoup moins élevée (~2 - ~8 jours). Les résultats combinés suggèrent que les caractéristiques nécessaires à la survie dans des conditions martiennes simulées étaient la résistance à la dessiccation, la radiation et aux cycles de gel-dégel.
Keeley, Ryan F. "Design and Implementation of Degenerate qPCR/qRT-PCR Primers to Detect Microbial Nitrogen Metabolism in Wastewater and Wastewater-Related Samples." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7826.
Full textZu, Theresah Nom Korbieh. "Phenotypic and Metabolic Profiling of Biological Samples in Near Real-Time Using Raman Spectroscopy." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/65153.
Full textPh. D.
Books on the topic "Microbial samples"
Roche, Karen. Genotype Detection In Environmental Samples. Dublin: University College Dublin, 1998.
Find full textVogel, J. R. Microbe concentrations, laser particle counts, and stable hydrogen and oxygen isotope ratios in samples from a riverbank filtration study, Platte River, Nebraska, 2002 to 2004. Reston, Va: U.S. Geological Survey, 2005.
Find full textMars, Sample Handling Protocol Workshop Series (2001 San Diego Calif ). Mars sample handling protocol workshop series: Interim report of the workshop series, Workshop 3 proceedings and final report, San Diego, California, March 19-21, 2001. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2001.
Find full textNational Research Council (U.S.). Space Studies Board, National Research Council (U.S.). Division on Engineering and Physical Sciences, and National Academies Press (U.S.), eds. Assessment of planetary protection requirements for Mars sample return missions. Washington, D.C: National Academies Press, 2009.
Find full textMars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Find full textMars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Find full textMars sample handling protocol workshop series: Interim report of the workshop series, Workshop 3 proceedings and final report, San Diego, California, March 19-21, 2001. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2001.
Find full textS, Race Margaret, Rummel J. D, and Ames Research Center, eds. Mars sample handling protocol workshop series: Interim report of the workshop series Workshop 1 proceedings and final report, Bethesda, Maryland, March 20-22, 2000. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Find full textTaberlet, Pierre, Aurélie Bonin, Lucie Zinger, and Eric Coissac. Some early landmark studies. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198767220.003.0011.
Full textL, Lewis David, and United States. Environmental Protection Agency., eds. Treating soil solution samplers to prevent microbial removal of analytes. [Washington, D.C.?: U.S. Environmental Protection Agency, 1992.
Find full textBook chapters on the topic "Microbial samples"
Jansson, Janet K., and Thomas Leser. "Quantitative PCR of environmental samples." In Molecular Microbial Ecology Manual, 43–61. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0215-2_5.
Full textInsam, Heribert. "A New Set of Substrates Proposed for Community Characterization in Environmental Samples." In Microbial Communities, 259–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60694-6_25.
Full textvan Verseveld, Henk W., Wilfred F. M. Röling, Diman van Rossum, Anniet M. Laverman, Stef van Dijck, Martin Braster, and Fred C. Boogerd. "Phenetic and Genetic Analyses of Bacterial Populations in Fermented Food and Environmental Samples." In Microbial Communities, 19–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60694-6_3.
Full textDelaney, Sarah, Richard Murphy, and Fiona Walsh. "Transposon-Aided Capture of Antibiotic Resistance Plasmids from Complex Samples." In Microbial Transposon Mutagenesis, 151–57. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9570-7_14.
Full textJansson, Janet K., and Thomas Leser. "Section 2 update: Quantitative PCR of environmental samples." In Molecular Microbial Ecology Manual, 2347–65. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-2177-0_213.
Full textAkaihe, Chidinma Lynda, Ebubechukwu Nnamdi Dim, Chizoba I. Ezugwu, Emeka Innocent Nweze, and Paul Ekene Chidebelu. "Analytical Techniques/Technologies for Studying Ecological Microbial Samples." In Environmental and Microbial Biotechnology, 481–517. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8999-7_18.
Full textMcHardy, Alice Carolyn, and Kaustubh Patil. "Phylogenetic Binning of Metagenome Sequence Samples." In Handbook of Molecular Microbial Ecology I, 353–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118010518.ch40.
Full textRimbara, Emiko, Masanori Sasatsu, and David Y. Graham. "PCR Detection of Helicobacter pylori in Clinical Samples." In PCR Detection of Microbial Pathogens, 279–87. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-60327-353-4_19.
Full textAnsari, A. Thaminum. "Biosorption and Discolorization of Textile Dye Effluent Using Fungi Isolated From Soil Samples Collected Near Textile Dye Industry." In Microbial Biofilms, 271–94. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367415075-17.
Full textLavender, Caroline J., and Janet A. M. Fyfe. "Direct Detection of Mycobacterium ulcerans in Clinical Specimens and Environmental Samples." In PCR Detection of Microbial Pathogens, 201–16. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-60327-353-4_13.
Full textConference papers on the topic "Microbial samples"
Sulaiman, I., B. Wu, J. C. Tsay, Y. Li, M. Sauthoff, A. S. Scott, K. Gershner, et al. "Functional Microbiomic Approaches Using Lower Airway Samples Identify a Subset of Lung Microbial Communities with Evidence of Active Microbial Metabolism." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4246.
Full textXu, Zhaohui, Pooja Yadav, Zhizhou Zhang, Sankardas Roy, and Huimin Zhang. "Quantification of microbial species in solid state fermentation samples using signature genomic sequences." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217781.
Full textChebotar, V. K., A. N. Zaplatkin, O. V. Komarova, M. E. Baganova, N. I. Polukhin, and S. V. Balakina. "Microbial preparations on the basis of endophytic bacteria for nutrition and protection of potatoes from diseases." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.051.
Full textGarcia, Alfonso, Trevor Place, Michael Holm, Jennifer Sargent, and Andrew Oliver. "Pipeline Sludge Sampling for Assessing Internal Corrosion Threat." In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33113.
Full textJadhav, P., S. Ashokkumar, and N. Nagwekar. "Microbial load reduction using modified Solar Conduction Dryer with composite filters." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7728.
Full textZhang, Chao, Prashant Vijay Thakkar, Felice Schnoll-Sussman, Bridget McClure, Michelle Bigg, Greg Sonnenberg, Doron Betel, and Manish Shah. "Abstract A04: Microbial and immunologic characterization of gastroesophageal tissue biopsy samples: A multiparametric analysis." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-a04.
Full textBangham, Madeleine, and Katherine Myall. "Investigating microbial communities in interstitial lung disease by standard culture of bronchioalveolar lavage samples." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2960.
Full textRahman, Jessica S., Jinyan Li, Juanying Xie, Shoshana Fogelman, and Michael Blumenstein. "Connectivity Based Method for Clustering Microbial Communities from Metagenomics Data of Water and Soil Samples." In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489220.
Full textLu, Jia, Xiaohou Shao, Chao Yin, Xinyu Mao, Long Wang, Yong Min, and Muchen Shu. "Preliminary study on removal of nitrate nitrogen in aqueous samples by microbial nano-silica ball." In International conference on Human Health and Medical Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/hhme131442.
Full textKublanovskaya, A. A., P. A. Zaytsev, K. A. Chekanov, T. A. Fedorenko, S. G. Vasilieva, A. E. Solovchenko, and E. S. Lobakova. "Comparative analysis of microbial communities from phosphorus-polluted sites from Northern (Russia) and Southern (Israel) latitudes." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.136.
Full textReports on the topic "Microbial samples"
Swanson, Juliet S. Microbial Characterization of Halite and Groundwater Samples from the WIPP. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089877.
Full textBerry, C. J., C. B. Fliermans, and J. Santo Domingo. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/630875.
Full textSwanson, Juliet S., Donald T. Reed, David A. Ams, Diana Norden, and Karen A. Simmons. Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1045985.
Full textLaurinavichius, K. S. Experimental Investigation of Microbially Induced Corrosion of Test Samples and Effect of Self-Assembled Hydrophobic Monolayers. Exposure of Test Samples to Continuous Microbial Cultures, Chemical Analysis, and Biochemical Studies. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/758748.
Full textThurston, Alison, Zoe Courville, Lauren Farnsworth, Ross Lieblappen, Shelby Rosten, John Fegyveresi, Stacy Doherty, Robert Jones, and Robyn Barbato. Microscale dynamics between dust and microorganisms in alpine snowpack. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40079.
Full text