Academic literature on the topic 'Microbial peptides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Microbial peptides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Microbial peptides"
Matsuzaki, K. "Why and how are peptide-lipid interactions utilized for self defence?" Biochemical Society Transactions 29, no. 4 (August 1, 2001): 598–601. http://dx.doi.org/10.1042/bst0290598.
Full textDang, Xiangli, and Guangshun Wang. "Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019." Current Topics in Medicinal Chemistry 20, no. 32 (December 3, 2020): 2984–98. http://dx.doi.org/10.2174/1568026620666201022143625.
Full textCytryńska, Małgorzata, and Agnieszka Zdybicka-Barabas. "Defense peptides: recent developments." Biomolecular Concepts 6, no. 4 (August 1, 2015): 237–51. http://dx.doi.org/10.1515/bmc-2015-0014.
Full textRuiz, Pedro J., Hideki Garren, David L. Hirschberg, Annette M. Langer-Gould, Mia Levite, Marcela V. Karpuj, Scott Southwood, Alessandro Sette, Paul Conlon, and Lawrence Steinman. "Microbial Epitopes Act as Altered Peptide Ligands to Prevent Experimental Autoimmune Encephalomyelitis." Journal of Experimental Medicine 189, no. 8 (April 19, 1999): 1275–84. http://dx.doi.org/10.1084/jem.189.8.1275.
Full textGrogan, Jane L., Achim Kramer, Axel Nogai, Liying Dong, Manuela Ohde, Jens Schneider-Mergener, and Thomas Kamradt. "Cross-Reactivity of Myelin Basic Protein-Specific T Cells with Multiple Microbial Peptides: Experimental Autoimmune Encephalomyelitis Induction in TCR Transgenic Mice." Journal of Immunology 163, no. 7 (October 1, 1999): 3764–70. http://dx.doi.org/10.4049/jimmunol.163.7.3764.
Full textRUISSEN, Anita L. A., Jasper GROENINK, Eva J. HELMERHORST, Els WALGREEN-WETERINGS, Wim van't HOF, Enno C. I. VEERMAN, and Arie V. NIEUW AMERONGEN. "Effects of histatin 5 and derived peptides on Candida albicans." Biochemical Journal 356, no. 2 (May 24, 2001): 361–68. http://dx.doi.org/10.1042/bj3560361.
Full textNagler, Adi, Shelly Kalaora, Deborah Gitta Rosenberg, Michal Alon, Eilon Barnea, Ronen Levy, Kevin Vervier, et al. "672 Identification of microbial-derived HLA-bound peptides in melanoma." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (November 2020): A710. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0672.
Full textWallace, R. J. "Acetylation of peptides inhibits their degradation by rumen micro-organisms." British Journal of Nutrition 68, no. 2 (September 1992): 365–72. http://dx.doi.org/10.1079/bjn19920095.
Full textRamón-García, Santiago, Ralf Mikut, Carol Ng, Serge Ruden, Rudolf Volkmer, Markus Reischl, Kai Hilpert, and Charles J. Thompson. "Targeting Mycobacterium tuberculosis and Other Microbial Pathogens Using Improved Synthetic Antibacterial Peptides." Antimicrobial Agents and Chemotherapy 57, no. 5 (March 11, 2013): 2295–303. http://dx.doi.org/10.1128/aac.00175-13.
Full textHearn, Jack, Jacob M. Riveron, Helen Irving, Gareth D. Weedall, and Charles S. Wondji. "Gene Conversion Explains Elevated Diversity in the Immunity Modulating APL1 Gene of the Malaria Vector Anopheles funestus." Genes 13, no. 6 (June 20, 2022): 1102. http://dx.doi.org/10.3390/genes13061102.
Full textDissertations / Theses on the topic "Microbial peptides"
Kwok, Hoi-shan, and 郭凱珊. "The comparison of biological properties of L- and D-enantiomeric antimicrobial peptides." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206507.
Full textpublished_or_final_version
Pharmacology and Pharmacy
Master
Master of Medical Sciences
Zhou, Yu. "Studies on anti-microbial peptides and other bioactive peptides from skin secretions of phyllomedusine frogs." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534594.
Full textChia, Brian Cheng San. "Amphibian antimicrobial peptides : their structures and mechanisms of action : a thesis presented for the degree of Doctor of Philosophy." Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phc532.pdf.
Full textChen, Heru. "Preparation and biological evaluation of the loloatins and their analogues /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202002%20CHEN.
Full textWilson, Sarah, and n/a. "Vaccine peptide delivery by virus particles." University of Otago. Department of Microbiology & Immunology, 2007. http://adt.otago.ac.nz./public/adt-NZDU20080131.161222.
Full textWabnitz, Paul Andrew. "Chemistry and medical implications of novel amphibian peptides : a thesis submitted for the degree of Doctor of Philosophy /." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phw112.pdf.
Full textBrewster, Rachel Elizabeth. "Synthesis of small molecules with specific function : I. Peptidocalix[4]arenes as molecular receptors ; II. Towards the total synthesis of (-)-Dihydroguaiaretic acid." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131103/unrestricted/brewster%5Frachel%5Fe%5F200405%5Fphd.pdf.
Full textLimoli, Dominique H. "Investigating the host and microbial determinants of Pseudomonas aeruginosa mucoid conversion." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406024226.
Full textLu, Qian. "Expression and regulation of human [beta]-defensins in gingival epithelia." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36613708.
Full textBesse, Alison. "Interactions microbiennes et adaptations en milieu extrême : peptides antimicrobiens d’archées halophiles." Thesis, Paris, Muséum national d'histoire naturelle, 2016. http://www.theses.fr/2016MNHN0007/document.
Full textHalophilic archaea are prokaryotes living in extremely high salinity conditions. Those microorganisms thrive in hypersaline environments and produce antimicrobial peptides named halocins, which may confer them a selective advantage over competitors. Among the known antimicrobial peptides produced by halophilic archaea, halocin C8 had been initially purified from the halophilic strain Natrinema sp. AS7092. This work demonstrates that halocin C8 production is conserved among several halophilic archaea belonging to genera Natrinema, Haloterrigena, Haloferax and Halobacterium. An antimicrobial activity has been associated with non-infectious particles larger than 100 kDa, suggesting that halocin C8 could be localized in membrane vesicles. Results obtained from this work will lead to a better understanding of microbial competitions arising in hypersaline environments and the ecological role of halocins
Books on the topic "Microbial peptides"
Joan, Marsh, Goode Jamie, Ciba Foundation, and Symposium on Antimicrobial Peptides (1994 : Ciba Foundation)d), eds. Antimicrobial peptides. Chichester, Eng: Wiley, 1994.
Find full text1930-, Kleinkauf Horst, and Döhren Hans von 1948-, eds. Biochemistry of peptide antibiotics: Recent advances in the biotechnology of B-lactams and microbial bioactive peptides. Berlin: W. de Gruyter, 1990.
Find full textGianfranco, Menestrina, and Dalla Serra Mauro, eds. Pore-forming peptides and protein toxins. London: Taylor and Francis, 2003.
Find full textAntimicrobial peptides: Methods and protocols. New York: Humana Press/Springer, 2010.
Find full textservice), ScienceDirect (Online, ed. Complex enzymes in microbial natural product biosynthesis: Polyketides, aminocoumarins and carbohydrates. London: Academic, 2009.
Find full textL, Gallo Richard, ed. Antimicrobial peptides in human health and disease. Wymondham, U.K: Horizon Bioscience, 2005.
Find full textservice), ScienceDirect (Online, ed. Complex enzymes in microbial natural product biosynthesis: Overview articles and peptides. Amsterdam: Elsevier, 2009.
Find full textK, Kay Brian, Winter Jill, and McCafferty John Dr, eds. Phage display of peptides and proteins: A laboratory manual. San Diego: Academic Press, 1996.
Find full textA, De pedro M., Höltje J. V. 1941-, Löffelhardt W, and Federation of European Microbiological Societies., eds. Bacterial growth and lysis: Metabolism and structure of the bacterial sacculus. New York: Plenum Press, 1993.
Find full textS, Sidhu Sachdev, ed. Phage display in biotechnology and drug discovery. Boca Raton, FL: Taylor & Francis/CRC Press, 2005.
Find full textBook chapters on the topic "Microbial peptides"
Bhima, B., and Mohammed Al Saiqali. "Antimicrobial Peptides From Plants And Their Application." In Microbial Biotechnology, 3–25. Toronto ; New Jersey : Apple Academic Press, 2015.: Apple Academic Press, 2017. http://dx.doi.org/10.1201/b19978-3.
Full textTavares, Tânia D., Marta O. Teixeira, Marta A. Teixeira, Joana C. Antunes, and Helena P. Felgueiras. "Effects of Antimicrobial Peptides on Bacteria and Viruses." In Microbial Systematics, 112–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003307679-7.
Full textSolanki, Divyang, Reena Kumari, Sangeeta Prakash, Amit Kumar Rai, and Subrota Hati. "Microbial Proteases for Production of Bioactive Peptides." In Microbial Enzymes in Production of Functional Foods and Nutraceuticals, 109–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003311164-9.
Full textPhazang, Paomipem, Neelam Prabha Negi, Meenakshi Raina, and Deepak Kumar. "Plant Antimicrobial Peptides: Next-Generation Bioactive Molecules for Plant Protection." In Environmental and Microbial Biotechnology, 281–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2576-6_14.
Full textMaeda, Hiroshi, Takaaki Akaike, Yoshifumi Sakata, and Keishi Maruo. "Role of Bradykinin in Microbial Infection: Enhancement of Septicemia by Microbial Proteases and Kinin." In Proteases, Protease Inhibitors and Protease-Derived Peptides, 159–65. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-7397-0_13.
Full textVirdi, Amardeep Singh, and Narpinder Singh. "Antimicrobial Peptides and Polyphenols: Implications in Food Safety and Preservation." In Microbial Control and Food Preservation, 117–52. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7556-3_7.
Full textWiesner, Jochen, and Andreas Vilcinskas. "Therapeutic Potential of Anti-Microbial Peptides from Insects." In Insect Biotechnology, 29–65. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9641-8_3.
Full textCian, Raúl E., and Silvina R. Drago. "Microbial Bioactive Peptides from Bacteria, Yeasts, and Molds." In Handbook of Food Bioactive Ingredients, 1–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81404-5_19-1.
Full textYap, Kuok, Conan K. Wang, David J. Craik, and Linda H. L. Lua. "Bioproduction of Cyclic Disulfide-Rich Peptides for Drug Modalities." In Microbial Production of High-Value Products, 143–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06600-9_6.
Full textAlbada, Bauke. "Tuning Activity of Antimicrobial Peptides by Lipidation." In Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids, 317–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15147-8_27.
Full textConference papers on the topic "Microbial peptides"
JAWAD, Israa, Adian Abd Alrazak DAKL, and Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW." In VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Full textKaugarenia, Nastassia, Sophie Beaubier, Erwann Durand, François Lesage, Xavier Framboisier, Arnaud Aymes, Pierre Villeneuve, and Romain Kapel. "Optimization of Potent Mineral Chelating Peptides Production from Rapeseed Meal Proteins Proteolysis and Peptide Characterizations." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ougk6662.
Full textSkronska-Wasek, Wioletta, Daniel Veyel, Felix Schiele, Jochen Blender, Bernd Guilliard, Kerstin Berer, Wolfgang Rist, James Garnett, and Stefan Pflanz. "Epithelium-derived Anti-Microbial Peptides Improve the Function of Macrophages." In Abstracts from the 17th ERS Lung Science Conference: ‘Mechanisms of Acute Exacerbation of Respiratory Disease’. European Respiratory Society, 2019. http://dx.doi.org/10.1183/23120541.lungscienceconference-2019.pp239.
Full textAgarwal, Shilpi, and Vijay Goel. "Digital holographic microscopy for bactericidal analysis by anti-microbial peptides." In Optics in Health Care and Biomedical Optics XII, edited by Qingming Luo, Xingde Li, Ying Gu, and Dan Zhu. SPIE, 2023. http://dx.doi.org/10.1117/12.2644232.
Full textKumrungsee, Thanutchaporn, Norihisa Kato, Toshiro Matsui, and Yongshou Yang. "Plant and gut microbiota-derived protein metabolites and potential health functions." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/envt3719.
Full textReinoso, Zain Sanchez, Jacinthe Thibodeau, Laila Ben Said, Ismail Fliss, Laurent Bazinet, and Sergey Mikhaylin. "Bioactive Peptide Production from Slaughterhouse Blood Proteins: Impact of Pulsed Electric Fields and Ph on Enzyme Inactivation, Antimicrobial and Antioxidant Activities of Peptic Hydrolysates from Bovine and Porcine Hemoglobins." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/fsht2150.
Full textShim, Youn Young, Clara Olivia, Xian-Guo Zou, Young Jun Kim, and Martin Reaney. "Stability of Novel Peptides (linusorbs) in Flaxseed Meal Fortified Gluten-free Bread." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mfmf5716.
Full textSchneider, Joel P., Hedi Mattoussi, Anshika Kapur, Wentao Wang, Juan Diaz Hernandez, and Scott Medina. "Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials." In Colloidal Nanoparticles for Biomedical Applications XIII, edited by Xing-Jie Liang, Wolfgang J. Parak, and Marek Osiński. SPIE, 2018. http://dx.doi.org/10.1117/12.2285661.
Full textHamin-Neto, Y. A. A., and H. Cabral. "Angiotensin I-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Whey Milk, Casein and Egg Albumin by Microbial Enzymes and a Commercial Enzyme." In The 24th American Peptide Symposium. Prompt Scientific Publishing, 2015. http://dx.doi.org/10.17952/24aps.2015.054.
Full textSharma, Mayank. "A CNN-Based K-Mer Classification of Anti-Microbial Peptide Sequences." In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2020. http://dx.doi.org/10.1109/icrito48877.2020.9198006.
Full textReports on the topic "Microbial peptides"
Sharma, M. M., and G. Georgiou. Microbial enhanced oil recovery research. [Peptides]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7053191.
Full textSharma, M. M., and G. Georgiou. Microbial enhanced oil recovery research. [Peptides]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6878180.
Full textTeixeira, Carla, Caterina Villa, Joana Costa, Isabel M. P. L. V. O. Ferreira, and Isabel Mafra. Edible insects as a source of bioactive peptides. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0075.
Full text